已知向量
OA
=(-1,1)、
OB
=(3,m),若
OA
AB
,則實(shí)數(shù)m=
 
考點(diǎn):數(shù)量積判斷兩個(gè)平面向量的垂直關(guān)系
專題:平面向量及應(yīng)用
分析:由向量的垂直關(guān)系可得數(shù)量積為0,解方程可得.
解答: 解:∵
OA
=(-1,1),
OB
=(3,m),且
OA
AB

OA
OB
=-3+m=0,解得m=3
故答案為:3
點(diǎn)評(píng):本題考查數(shù)量積與向量的垂直關(guān)系,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將19化為二進(jìn)制的數(shù)是( 。
A、10110(2)
B、11010(2)
C、10011(2)
D、1011(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l的參數(shù)方程為
x=
1
2
t
y=
3
2
t+2-2
3
(t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半徑為極軸)中,曲線C的極坐標(biāo)方程為ρ=4cosθ.
(1)分別將直線l和曲線C的方程化為直角坐標(biāo)系下的普通方程;
(2)設(shè)直線l與曲線C交于P、Q兩點(diǎn),求|PQ|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(x2-
1
x
6的二項(xiàng)展開式中含x6的系數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

A={x|0≤x≤2},B={y|1≤y≤2},下列圖形中能表示以A為定義域,B為值域的函數(shù)的是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:對(duì)一切a≤1,有f(x)=x2-ax+1在[1,+∞)上為增函數(shù)( 。
A、¬p:存在a≤1,使f(x)=x2-ax+1在[1,+∞)上為減函數(shù)
B、¬p:存在a≤1,使f(x)=x2-ax+1在[1,+∞)上不是增函數(shù)
C、¬p:對(duì)一切a≤1,使f(x)=x2-ax+1在[1,+∞)上為減函數(shù)
D、¬p:對(duì)一切a≤1,使f(x)=x2-ax+1在[1,+∞)上不是增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在長(zhǎng)方體ABCD-A1B1C1D1中,AB=3,AD=
3
,AA1=h,則異面直線BD與B1C1所成的角為( 。
A、30°B、60°
C、90°D、不能確定,與h有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若S8=32,則a2+a7=( 。
A、1B、4C、8D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)全集U=R,集合A={x|x2-x-2=0},B={y|y=x+1,x∈A},則∁U(A∩B)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案