【題目】(本小題滿分16分)已知函數(shù)處的切線方程為

(1)若= ,求證:曲線上的任意一點處的切線與直線和直線

圍成的三角形面積為定值;

(2)若,是否存在實數(shù),使得對于定義域內(nèi)的任意都成立;

(3)在(2)的條件下,若方程有三個解,求實數(shù)的取值范圍.

【答案】(1)詳見解析(2)

【解析】試題分析:

試題解析:根據(jù)導數(shù)的幾何意義, 為切線的斜率,解出,寫出的切線方程求出三角形的面積為定值.利用求出,假設(shè)存在m,k滿足題意,則式子對定義域任一恒成立,解出;代入的值使方程有三個解,化為 =|x|(x﹣1),畫出的圖象,要求﹣ 0,解出的范圍.

證明:(1)因為 f′(x)=

所以 f′(3)= ,

g(x)=f(x+1)=ax+ ,

設(shè)g(x)圖象上任意一點P(x0,y0)因為 g′(x)=a﹣

所以切線方程為y﹣(ax0+)=(a﹣)(x﹣x0

x=0 y=; 再令y=ax x=2x0

故三角形面積S=|||2x0|=4,

即三角形面積為定值.

(2)由f(3)=3a=1,f(x)=x+ ﹣1假設(shè)存在m,k滿足題意,

則有x﹣1++m﹣x﹣1+=k

化簡,得 對定義域內(nèi)任意x都成立,

故只有 解得

所以存在實數(shù)m=2,k=0使得f(x)+f(m﹣k)=k對定義域內(nèi)的任意都成立.

(3)由題意知,x﹣1+=t(x2﹣2x+3)|x|

因為x0,且x1化簡,得 t=

=|x|(x﹣1),

如圖可知,﹣ 0,

所以t﹣4即為t的取值范圍.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的首項a1= ,an+1= ,n=1,2,…
(1)求證:{ ﹣1}是等比數(shù)列,并求出{an}的通項公式;
(2)證明:對任意的x>0,an ﹣x),n=1,2,…
(3)證明:n﹣ ≥a1+a2+…+an

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若a,b,c∈R,且a>b,則下列不等式一定成立的是(
A.a+c≥b﹣c
B.ac>bc
C. >0
D.(a﹣b)c2≥0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某貨運員擬運送甲、乙兩種貨物,每件貨物的體積、重量、可獲利潤如表所示:

體積(升/件)

重量(公斤/件)

利潤(元/件)

20

10

8

10

20

10

在一次運輸中,貨物總體積不超過110升,總重量不超過100公斤,那么在合理的安排下,一次運輸獲得的最大利潤為(
A.65元
B.62元
C.60元
D.56元

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

極坐標系中, 為極點,半徑為2的圓的圓心坐標為.

1)求圓的極坐標方程;

2)設(shè)直角坐標系的原點與極點重合, 軸非負關(guān)軸與極軸重合,直線的參數(shù)方程為為參數(shù)),由直線上的點向圓引切線,求切線長的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分14分)

的對邊分別為已知,成等比數(shù)列.求:

(1) 的值;

(2) 的值;

(3) 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市為了解本市2萬名學生的漢字書寫水平,在全市范圍內(nèi)進行了漢字聽寫考試,現(xiàn)從某校隨機抽取了50名學生,將所得成績整理后,發(fā)現(xiàn)其成績?nèi)拷橛?/span>之間,將其成績按如下分成六組,得到頻數(shù)分布表

成績

人數(shù)

4

10

16

10

6

4

1)在答題卡上作出這些數(shù)據(jù)的頻率分布直方圖;

2)估算該校50名學生成績的平均值和中位數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

3)以該校50名學生成績的頻率作為概率,試估計該市分數(shù)在的人數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知 =
(1)求 的值
(2)若cosB= ,b=2,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合P={x|x2>2},Q={0,1,2,3},則(RP)∩Q=(
A.{0,1}
B.{0}
C.{2,3}
D.{1,2,3}

查看答案和解析>>

同步練習冊答案