已知△ABC的三個(gè)內(nèi)角∠A,∠B,∠C所對(duì)的邊分別為a,b,c,且
cosA
cosB
=-
a
b+2c
,則角A的大小為
 
分析:根據(jù)正弦定理與兩角和的正弦公式,化簡(jiǎn)題中的等式得-2sinCcosA=sin(A+B),再利用三角函數(shù)的誘導(dǎo)公式算出sin(A+B)=sinC>0,從而得出cosA=-
1
2
,結(jié)合A∈(0,π)可得A的大。
解答:解:∵
cosA
cosB
=-
a
b+2c
,∴根據(jù)正弦定理,得
cosA
cosB
=-
sinA
sinB+2sinC
,
即sinBcosA+2sinCcosA=-cosBcosA,
整理得-2sinCcosA=sinBcosA+cosBcosA=sin(A+B),
∵在△ABC中,sin(A+B)=sin(π-C)=sinC>0,
∴-2sinCcosA=sinC,約去sinC得cosA=-
1
2

又∵A∈(0,π),∴A=
3

故答案為:
3
點(diǎn)評(píng):本題給出三角形滿足的邊角關(guān)系式,求角A的大小.著重考查了兩角和的正弦公式、特殊角的三角函數(shù)值與正余弦定理等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的三個(gè)頂點(diǎn)的A、B、C及平面內(nèi)一點(diǎn)P滿足
PA
+
PB
+
PC
=
AB
,下列結(jié)論中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的三個(gè)頂點(diǎn)A、B、C及平面內(nèi)一點(diǎn)P,若
PA
+
PB
+
PC
=
AB
,則點(diǎn)P與△ABC的位置關(guān)系是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的三個(gè)頂點(diǎn)ABC及平面內(nèi)一點(diǎn)P滿足:
PA
+
PB
+
PC
=
0
,若實(shí)數(shù)λ滿足:
AB
+
AC
=λ
AP
,則λ的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(1,3)、B(3,1)、C(-1,0),求BC邊上的高所在的直線方程.
(2)過(guò)橢圓
x2
16
+
y2
4
=1
內(nèi)一點(diǎn)M(2,1)引一條弦,使得弦被M點(diǎn)平分,求此弦所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的三個(gè)頂點(diǎn)A,B,C及平面內(nèi)一點(diǎn)P滿足:
PA
+
PB
+
PC
=
0
,若實(shí)數(shù)λ 滿足:
AB
+
AC
AP
,則λ的值為( 。
A、3
B、
2
3
C、2
D、8

查看答案和解析>>

同步練習(xí)冊(cè)答案