已知△ABC的三個頂點(diǎn)A,B,C及平面內(nèi)一點(diǎn)P滿足:
PA
+
PB
+
PC
=
0
,若實數(shù)λ 滿足:
AB
+
AC
AP
,則λ的值為( 。
A、3
B、
2
3
C、2
D、8
分析:利用向量基本定理結(jié)合向量的減法有:
AB
 =
PB
-
PA
,
AC
=
PC
-
PA
,化簡即得.
解答:解:由題意得,(
PB
-
PA
)+(
PC
-
PA
)=-λ
PA
;
(λ-2)
PA
+
PB
+
PC
=
0

∴λ=3
故選A.
點(diǎn)評:本題的計算中,只需將向量都化成以P為起點(diǎn)就可以比較得出解答了.解答的關(guān)鍵是向量基本定理的理解與應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三個頂點(diǎn)A、B、C及△ABC所在平面內(nèi)一點(diǎn)P,若
PA
+
PB
+
PC
=
0
,若實數(shù)λ滿足
AB
+
AC
AP
,則實數(shù)λ等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三個頂點(diǎn)A(2,1)、B(-2,3)、C(-3,0),求
(1)BC邊所在直線的一般式方程.
(2)BC邊上的高AD所在的直線的一般式方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三個頂點(diǎn)A、B、C及△ABC所在平面內(nèi)的一點(diǎn)P,若
PA
+
PB
+
PC
=
0
若實數(shù)λ滿足
AB
+
AC
AP
,則實數(shù)λ等于
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三個頂點(diǎn)A(-1,-2),B(2,0),C(1,3).
(1)求AB邊上的高CD所在直線的方程;
(2)求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案