【題目】設(shè)函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)如果對所有的≥1,都有≤,求的取值范圍.
【答案】(Ⅰ)函數(shù)在上單調(diào)遞減,在單調(diào)遞增;(Ⅱ).
【解析】
試題(Ⅰ)先對函數(shù)求導(dǎo),再對的取值范圍進(jìn)行討論,即可得的單調(diào)性;(Ⅱ)設(shè),先對函數(shù)求導(dǎo),再對的取值范圍進(jìn)行討論函數(shù)的單調(diào)性,進(jìn)而可得的取值范圍.
試題解析:(Ⅰ)的定義域?yàn)?/span>,2分
當(dāng)時(shí),,當(dāng)時(shí),3分
所以函數(shù)在上單調(diào)遞減,在單調(diào)遞增. 5分
(Ⅱ)法一:設(shè),則
因?yàn)?/span>≥1,所以7分
(ⅰ)當(dāng)時(shí),,,所以在單調(diào)遞減,而,所以對所有的≥1,≤0,即≤;
(ⅱ)當(dāng)時(shí),,若,則,單調(diào)遞增,而,所以當(dāng)時(shí),,即;
(ⅲ)當(dāng)時(shí),,,所以在單調(diào)遞增,而,所以對所有的≥1,,即;
綜上,的取值范圍是12分
法二:當(dāng)≥1時(shí),≤ 6分
令,則7分
令,則,當(dāng)≥1時(shí),8分
于是在上為減函數(shù),從而,因此, 9分
于是在上為減函數(shù),所以當(dāng)時(shí)有最大值, 11分
故,即的取值范圍是. 12分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為倡導(dǎo)全體學(xué)生為特困學(xué)生捐款,舉行“一元錢,一片心,誠信用水”活動,學(xué)生在購水處每領(lǐng)取一瓶礦泉水,便自覺向捐款箱中至少投入一元錢。現(xiàn)統(tǒng)計(jì)了連續(xù)5天的售出和收益情況,如下表:
售出水量x(單位:箱) | 7 | 6 | 6 | 5 | 6 |
收益y(單位:元) | 165 | 142 | 148 | 125 | 150 |
(Ⅰ) 若x與y成線性相關(guān),則某天售出8箱水時(shí),預(yù)計(jì)收益為多少元?
(Ⅱ) 期中考試以后,學(xué)校決定將誠信用水的收益,以獎學(xué)金的形式獎勵給品學(xué)兼優(yōu)的特困生,規(guī)定:特困生考入年級前200名,獲一等獎學(xué)金500元;考入年級201—500 名,獲二等獎學(xué)金300元;考入年級501名以后的特困生將不獲得獎學(xué)金。甲、乙兩名學(xué)生獲一等獎學(xué)金的概率均為,獲二等獎學(xué)金的概率均為,不獲得獎學(xué)金的概率均為.
⑴在學(xué)生甲獲得獎學(xué)金條件下,求他獲得一等獎學(xué)金的概率;
⑵已知甲、乙兩名學(xué)生獲得哪個(gè)等第的獎學(xué)金是相互獨(dú)立的,求甲、乙兩名學(xué)生所獲得獎學(xué)金總金額X 的分布列及數(shù)學(xué)期望。
附: , 。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y2=2px的焦點(diǎn)為F,準(zhǔn)線方程是x=﹣1.
(I)求此拋物線的方程;
(Ⅱ)設(shè)點(diǎn)M在此拋物線上,且|MF|=3,若O為坐標(biāo)原點(diǎn),求△OFM的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題正確的選項(xiàng)為( )
①平面外一條直線與平面內(nèi)的一條直線平行,則該直線與此平面平行;
②一個(gè)平面內(nèi)的一條直線與另一個(gè)平面平行,則這兩個(gè)平面平行;
③一條直線與一個(gè)平面內(nèi)的兩條直線垂直,則該直線與此平面垂直;
④一個(gè)平面過另一個(gè)平面的垂線,則這兩個(gè)平面垂直.
A.①②B.②③C.①④D.③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對四件參賽作品只評一件一等獎,在評獎揭曉前,甲,乙,丙,丁四位同學(xué)對這四件參賽作品預(yù)測如下:
甲說:“是或作品獲得一等獎”; 乙說:“ 作品獲得一等獎”;
丙說:“ 兩件作品未獲得一等獎”; 丁說:“是作品獲得一等獎”.
評獎揭曉后,發(fā)現(xiàn)這四位同學(xué)中只有兩位說的話是對的,則獲得一等獎的作品是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)、為平面上兩個(gè)點(diǎn)集,滿足,,且任意三點(diǎn)不共線.在集合和間各連若干條線段,每條線段均一個(gè)端點(diǎn)在集合中,另一個(gè)端點(diǎn)在集合中,且任意兩點(diǎn)間至多連一條線段,記所有線段構(gòu)成的集合為.若集合滿足對于集合或中任意一點(diǎn)均至少連出條線段,則稱集合是“一好的”.試確定的最大值,使得去掉任意一條線段,集合均不是一好的.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為正整數(shù),記平面點(diǎn)集.問:平面內(nèi)最少要有多少條直線,它們的并集才能包含,但不含點(diǎn)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,其中向量,().
(1)求的最小正周期和最小值;
(2)在△ABC中,角A、B、C的對邊分別為、、,若,a=,,求邊長的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合,拋物線的動弦過點(diǎn),過點(diǎn)且垂直于弦的直線交拋物線的準(zhǔn)線于點(diǎn).
(Ⅰ)求拋物線的標(biāo)準(zhǔn)方程;
(Ⅱ)求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com