已知f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=2+f(
1
2
)log2x,則f(-2)=( 。
A、1B、3C、-1D、-3
考點(diǎn):函數(shù)奇偶性的性質(zhì)
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:首先令x=
1
2
,求出f(
1
2
),寫出x>0的函數(shù)f(x)的解析式,由函數(shù)奇偶性的定義,得f(-2)=-f(2),利用x>0的解析式求出f(2)即可.
解答: 解:當(dāng)x>0時(shí),f(x)=2+f(
1
2
)log2x,
令x=
1
2
,則f(
1
2
)=2+f(
1
2
)log2
1
2
=2-f(
1
2
),
則f(
1
2
)=1,
∴x>0時(shí),f(x)=2+log2x,
∵f(x)是定義在R上的奇函數(shù),
∴f(-2)=-f(2),
又f(2)=2+log22=3,
∴f(-2)=-3.
故選D.
點(diǎn)評(píng):本題主要考查函數(shù)的奇偶性及應(yīng)用求值,注意賦值化簡,正確理解函數(shù)奇偶性的定義和靈活運(yùn)用,是解決問題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知正方體ABCD-A1B1C1D1,平面BB1C1C內(nèi)到直線AA1和直線BC距離相等的點(diǎn)的軌跡是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義:<m>表示大于或等于m的最小整數(shù)(m是實(shí)數(shù)).若函數(shù)f(x)=
2x
2x+1
,則函數(shù)g(x)=<f(x)-
1
2
>+<f(-x)-
1
2
>的值域?yàn)?div id="pxtzpvh" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某市環(huán)保部門準(zhǔn)備對分布在該市的A,B,C,D,E,F(xiàn),G等8個(gè)不同監(jiān)測點(diǎn)的環(huán)境監(jiān)測設(shè)備進(jìn)行檢測維護(hù).要求在一周內(nèi)的星期一至星期五檢測維護(hù)完所有監(jiān)測點(diǎn)的設(shè)備,且每天至少去一個(gè)監(jiān)測點(diǎn)進(jìn)行檢測維護(hù),其中A,B兩個(gè)監(jiān)測點(diǎn)分別安排在星期一和星期五,C,D,E三個(gè)監(jiān)測點(diǎn)必須安排在同一天,F(xiàn)監(jiān)測點(diǎn)不能在星期五,則不同的安排方法種數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)為奇函數(shù),且當(dāng)x<0時(shí),f(x)=x(x2+x-1),則x>0時(shí),f(x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知下列四個(gè)命題:
①若一個(gè)圓錐的底面半徑縮小到原來的
1
2
,其體積縮小到原來的
1
4
;
②若兩組數(shù)據(jù)的標(biāo)準(zhǔn)差相等,則它們的平均數(shù)也相等;
③直線x+y+1=0與圓x2+y2=
1
2
相切;
④“10a≥10b”是“l(fā)ga≥lgb”的充分不必要條件.
其中真命題的序號(hào)是( 。
A、①②B、②④C、①③D、②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合A={x|
x-2
x+1
<0},B={x|(x-a)(x-b)<0},若“a=-2”是“A∩B≠∅”的充分條件,則b的取值范圍是(  )
A、b<-1B、b>-1
C、b≥-1D、-1<b<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解方程:
C
x-2
x+2
+
C
x-3
x+2
=
1
10
A
3
x+3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}為等差數(shù)列,d≠0,若數(shù)列{an}中ak1,ak2ak3,…,akn構(gòu)成等比數(shù)列,其中k1=1,k2=5,k3=17.
(1)求kn;
(2)求證:k1+k2+…+kn=3n-n-1.

查看答案和解析>>

同步練習(xí)冊答案