【題目】計算:(3﹣π)0+4sin45°﹣ +|1﹣ |.

【答案】解:(3﹣π)0+4sin45°﹣ +|1﹣ |
=1+4× ﹣2 + ﹣1
=1+ ﹣2 + ﹣1
=
【解析】根據(jù)實數(shù)的運算順序,首先計算乘方、開方和乘法,然后從左向右依次計算,求出算式(3﹣π)0+4sin45°﹣ +|1﹣ |的值是多少即可.(1)此題主要考查了實數(shù)的運算,要熟練掌握,解答此題的關(guān)鍵是要明確:在進行實數(shù)運算時,和有理數(shù)運算一樣,要從高級到低級,即先算乘方、開方,再算乘除,最后算加減,有括號的要先算括號里面的,同級運算要按照從左到右的順序進行.另外,有理數(shù)的運算律在實數(shù)范圍內(nèi)仍然適用;
(2)此題還考查了零指數(shù)冪的運算,要熟練掌握,解答此題的關(guān)鍵是要明確:①a0=1(a≠0);②00≠1;
(3)此題還考查了特殊角的三角函數(shù)值,要牢記30°、45°、60°角的各種三角函數(shù)值.
【考點精析】解答此題的關(guān)鍵在于理解零指數(shù)冪法則的相關(guān)知識,掌握零次冪和負整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù)),以及對特殊角的三角函數(shù)值的理解,了解分母口訣:30度、45度、60度的正弦值、余弦值的分母都是2,30度、45度、60度的正切值、余切值的分母都是3,分子口訣:“123,321,三九二十七”.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠BAC=90°,PA⊥面ABC,AB=AC,D是BC的中點,則圖中直角三角形的個數(shù)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三棱柱側(cè)棱與底面垂直,,,分別是,的中點.

)求證:平面

)求證:平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為,其中為參數(shù), ,再以坐標(biāo)原點為極點,以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,其中 ,直線與曲線交于兩點.

(1)求的值;

(2)已知點,且,求直線的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】林業(yè)部門要考察某種幼樹在一定條件下的移植成活率,下表是這種幼樹在移植過程中的一組數(shù)據(jù):

移植的棵數(shù)n

1000

1500

2500

4000

8000

15000

20000

30000

成活的棵數(shù)m

865

1356

2220

3500

7056

13170

17580

26430

成活的頻率

0.865

0.904

0.888

0.875

0.882

0.878

0.879

0.881

估計該種幼樹在此條件下移植成活的概率為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,AE平分∠BAD,交DC的延長線于點E.求證:DA=DE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的一元二次方程x2+(2m+1)x+m2﹣1=0有兩個不相等的實數(shù)根.
(1)求m的取值范圍;
(2)寫出一個滿足條件的m的值,并求此時方程的根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高科技企業(yè)生產(chǎn)產(chǎn)品A和產(chǎn)品B需要甲、乙兩種新型材料.生產(chǎn)一件產(chǎn)品A需要甲材料1.5kg,乙材料1kg,用5個工時;生產(chǎn)一件產(chǎn)品B需要甲材料0.5kg,乙材料0.3kg,用3個工時.生產(chǎn)一件產(chǎn)品A的利潤為2100元,生產(chǎn)一件產(chǎn)品B的利潤為900元.該企業(yè)現(xiàn)有甲材料150kg,乙材料90kg,求在不超過600個工時的條件下,生產(chǎn)產(chǎn)品A和產(chǎn)品B的利潤之和的最大值(元).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【廣東省佛山市2017屆高三4月教學(xué)質(zhì)量檢測(二)數(shù)學(xué)文】已知橢圓 )的焦距為4,左、右焦點分別為,且與拋物線 的交點所在的直線經(jīng)過.

(Ⅰ)求橢圓的方程;

(Ⅱ)過的直線交于, 兩點,與拋物線無公共點,求的面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案