科拉茨是德國(guó)數(shù)學(xué)家,他在1937年提出了一個(gè)著名的猜想:任給一個(gè)正整數(shù)n,如果n是偶數(shù),就將它減半(即);如果n是奇數(shù),則將它乘3加1(即),不斷重復(fù)這樣的運(yùn)算,經(jīng)過有限步后,一定可以得到1.如初始正整數(shù)為6,按照上述變換規(guī)則,我們可以得到一個(gè)數(shù)列:6,3,10,5,16,8,4,2,1.對(duì)于科拉茨猜想,目前誰也不能證明,也不能否定,現(xiàn)在請(qǐng)你研究:

(1)如果,則按照上述規(guī)則施行變換后的第8項(xiàng)為           

(2)如果對(duì)正整數(shù)(首項(xiàng))按照上述規(guī)則施行變換后的第8項(xiàng)為1(注:1可以多次出現(xiàn)),則的所有不同值的個(gè)數(shù)為           

 

【答案】

(1)1 ;(2)6

【解析】

試題分析:(1)如果,按以上變換規(guī)則,得到數(shù)列:

(2)設(shè)對(duì)正整數(shù)按照上述變換,得到數(shù)列:,∵,則

的所有可能取值為2,3,16,20,21,128,共6個(gè).

考點(diǎn):新定義問題.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

洛薩•科拉茨(Lothar Collatz,1910.7.6-1990.9.26)是德國(guó)數(shù)學(xué)家,他在1937年提出了一個(gè)著名的猜想:任給一個(gè)正整數(shù)n,如果n是偶數(shù),就將它減半(即
n2
);如果它是奇數(shù),則將它乘3加1(即3n+1),不斷重復(fù)這樣的運(yùn)算,經(jīng)過有限步后,一定可以得到1.如初始正整數(shù)為3,按照上述變換規(guī)則,我們得到一個(gè)數(shù)列:3,10,5,16,8,4,2,1.對(duì)科拉茨(Lothar Collatz)猜想,目前誰也不能證明,更不能否定.現(xiàn)在請(qǐng)你研究:如果對(duì)正整數(shù)n(首項(xiàng))按照上述規(guī)則施行變換(注:1可以多次出現(xiàn))后的第六項(xiàng)為1,則n的所有可能的取值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

洛薩•科拉茨(Lothar Collatz,1910.7.6-1990.9.26)是德國(guó)數(shù)學(xué)家,他在1937年提出了一個(gè)著名的猜想:任給一個(gè)正整數(shù)n,如果n是偶數(shù),就將它減半(即
n2
);如果n是奇數(shù),則將它乘3加1(即3n+1),不斷重復(fù)這樣的運(yùn)算,經(jīng)過有限步后,一定可以得到1.如初始正整數(shù)為6,按照上述變換規(guī)則,我們得到一個(gè)數(shù)列:6,3,10,5,16,8,4,2,1.對(duì)科拉茨(Lothar Collatz)猜想,目前誰也不能證明,更不能否定.現(xiàn)在請(qǐng)你研究:如果對(duì)正整數(shù)n(首項(xiàng))按照上述規(guī)則施行變換(注:1可以多次出現(xiàn))后的第八項(xiàng)為1,則n的所有可能的取值為
{2,3,16,20,21,128}
{2,3,16,20,21,128}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

德國(guó)數(shù)學(xué)家洛薩•科拉茨1937年提出了一個(gè)猜想:任給一個(gè)正整數(shù)n,如果它是偶數(shù),就將它減半;如果它是奇數(shù),則將它乘3再加1,不斷重復(fù)這樣的運(yùn)算,經(jīng)過有限步后,一定可以得到1.如初始正整數(shù)為6,按照上述變換規(guī)則,得到一個(gè)數(shù)列:6,3,10,5,16,8,4,2,1.現(xiàn)在請(qǐng)你研究:如果對(duì)正整數(shù)n(首項(xiàng)),按照上述規(guī)則實(shí)施變換(1可以多次出現(xiàn))后的第八項(xiàng)為1,則n的所有可能的對(duì)值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省黃岡市高三6月適應(yīng)性考試?yán)砜艫數(shù)學(xué)試卷(解析版) 題型:填空題

科拉茨是德國(guó)數(shù)學(xué)家,他在1937年提出了一個(gè)著名的猜想:任給一個(gè)正整數(shù)n,如果n是偶數(shù),就將它減半(即);如果n是奇數(shù),則將它乘3加1(即),不斷重復(fù)這樣的運(yùn)算,經(jīng)過有限步后,一定可以得到1.如初始正整數(shù)為6,按照上述變換規(guī)則,我們可以得到一個(gè)數(shù)列:6,3,10,5,16,8,4,2,1.對(duì)于科拉茨猜想,目前誰也不能證明,也不能否定,現(xiàn)在請(qǐng)你研究:

(1)如果,則按照上述規(guī)則施行變換后的第8項(xiàng)為           

(2)如果對(duì)正整數(shù)(首項(xiàng))按照上述規(guī)則施行變換后的第8項(xiàng)為1(注:1可以多次出現(xiàn)),則的所有不同值的個(gè)數(shù)為           

 

查看答案和解析>>

同步練習(xí)冊(cè)答案