【題目】已知曲線(xiàn)的參數(shù)方程為:(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為,直線(xiàn)的直角坐標(biāo)方程為.
(l)求曲線(xiàn)和直線(xiàn)的極坐標(biāo)方程;
(2)已知直線(xiàn)分別與曲線(xiàn)、曲線(xiàn)交異于極點(diǎn)的,若的極徑分別為,求的值.
【答案】(1),;(2)3.
【解析】
(1)曲線(xiàn)為圓:,用公式代入,得極坐標(biāo)方程,直線(xiàn)過(guò)原點(diǎn),且傾斜角為,所以直線(xiàn)的極坐標(biāo)方程為;(2)曲線(xiàn)均為圓且都過(guò)極點(diǎn)O,所以代入,分別求得極徑分別為,代入即求解.
(1)曲線(xiàn)的參數(shù)方程為(為參數(shù)),普通方程為,
極坐標(biāo)方程為,
∵直線(xiàn)的直角坐標(biāo)方程為,
故直線(xiàn)的極坐標(biāo)方程為.
(2)曲線(xiàn)的極坐標(biāo)方程為:,
直線(xiàn)的極坐標(biāo)方程為,
將代入的極坐標(biāo)方程得,
將代入的極坐標(biāo)方程得,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在三棱錐中, 和是邊長(zhǎng)為的等邊三角形, , 分別是的中點(diǎn).
(1)求證: 平面;
(2)求證: 平面;
(3)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)為定義在上的奇函數(shù),且當(dāng)時(shí),
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)求函數(shù)在區(qū)間 上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為a的菱形ABCD中,,E,F分別是PA和AB的中點(diǎn).
(1)求證: EF||平面PBC;
(2)求E到平面PBC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,摩天輪的半徑為50m,圓心O距地面的高度為65m.已知摩天輪按逆時(shí)針?lè)较騽蛩俎D(zhuǎn)動(dòng),每30min轉(zhuǎn)動(dòng)一圈.游客在摩天輪的艙位轉(zhuǎn)到距離地面最近的位置進(jìn)艙.
(1)游客進(jìn)入摩天輪的艙位,開(kāi)始轉(zhuǎn)動(dòng)tmin后,他距離地面的高度為h,求h關(guān)于t的函數(shù)解析式;
(2)已知在距離地面超過(guò)40m的高度,游客可以觀(guān)看到游樂(lè)場(chǎng)全景,那么在摩天輪轉(zhuǎn)動(dòng)一圈的過(guò)程中,游客可以觀(guān)看到游樂(lè)場(chǎng)全景的時(shí)間是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知多面體的底面是邊長(zhǎng)為的菱形, 底面, ,且.
(1)證明:平面平面;
(2)若直線(xiàn)與平面所成的角為,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)設(shè),當(dāng)時(shí),對(duì)任意,存在,使,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)定義域?yàn)?/span>R的函數(shù).
(1)在平面直角坐標(biāo)系中作出函數(shù)f(x)的圖象,并指出f(x)的單調(diào)區(qū)間(不需證明);
(2)若方程f(x)+5a=0有兩個(gè)解,求出a的取值范圍(不需嚴(yán)格證明,簡(jiǎn)單說(shuō)明即可);
(3)設(shè)定義域?yàn)?/span>R的函數(shù)g(x)為偶函數(shù),且當(dāng)x≥0時(shí),g(x)=f(x),求g(x)的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的右焦點(diǎn)與拋物線(xiàn)的焦點(diǎn)重合,且橢圓的離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)是橢圓的右頂點(diǎn),過(guò)點(diǎn)作兩條直線(xiàn)分別與橢圓交于另一點(diǎn),若直線(xiàn)的斜率之積為,求證:直線(xiàn)恒過(guò)一個(gè)定點(diǎn),并求出這個(gè)定點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com