【題目】已知橢圓的右焦點(diǎn)與拋物線的焦點(diǎn)重合,且橢圓的離心率為

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)是橢圓的右頂點(diǎn),過(guò)點(diǎn)作兩條直線分別與橢圓交于另一點(diǎn),若直線的斜率之積為,求證:直線恒過(guò)一個(gè)定點(diǎn),并求出這個(gè)定點(diǎn)的坐標(biāo).

【答案】(Ⅰ )(Ⅱ)直線恒過(guò)點(diǎn)

【解析】分析: (Ⅰ)由題意布列關(guān)于a,b的方程組,解之即可;(Ⅱ)設(shè)直線,與橢圓方程聯(lián)立可得,利用根與系數(shù)的關(guān)系表示直線的斜率之積為,可得值,從而得證.

詳解: (Ⅰ)依題意:,解得,即橢圓;

(Ⅱ)設(shè)直線,

,

;

設(shè),而,則由

,

,

,

整理得,解得(舍去)

直線,知直線恒過(guò)點(diǎn)

點(diǎn)睛: 定點(diǎn)、定值問(wèn)題通常是通過(guò)設(shè)參數(shù)或取特殊值來(lái)確定“定點(diǎn)”是什么、“定值”是多少,或者將該問(wèn)題涉及的幾何式轉(zhuǎn)化為代數(shù)式或三角問(wèn)題,證明該式是恒定的. 定點(diǎn)、定值問(wèn)題同證明問(wèn)題類似,在求定點(diǎn)、定值之前已知該值的結(jié)果,因此求解時(shí)應(yīng)設(shè)參數(shù),運(yùn)用推理,到最后必定參數(shù)統(tǒng)消,定點(diǎn)、定值顯現(xiàn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線的參數(shù)方程為:為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線的直角坐標(biāo)方程為.

(l)求曲線和直線的極坐標(biāo)方程;

(2)已知直線分別與曲線、曲線交異于極點(diǎn)的,若的極徑分別為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)某長(zhǎng)產(chǎn)品近幾年的產(chǎn)量統(tǒng)計(jì)如表:

年份

2012

2013

2014

2015

2016

2017

年份代碼

1

2

3

4

5

6

年產(chǎn)量(萬(wàn)噸)

6.6

6.7

7

7.1

7.2

7.4

(1)根據(jù)表中數(shù)據(jù),建立關(guān)于的線性回歸方程;

(2)若近幾年該農(nóng)產(chǎn)品每千克的價(jià)格(單位:元)與年產(chǎn)量滿足的函數(shù)關(guān)系式為,且每年該農(nóng)產(chǎn)品都能售完.

①根據(jù)(1)中所建立的回歸方程預(yù)測(cè)該地區(qū)2018()年該農(nóng)產(chǎn)品的產(chǎn)量;

②當(dāng))為何值時(shí),銷售額最大?

附:對(duì)于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)雙曲線的右焦點(diǎn)且傾斜角為的直線與圓相切,則該雙曲線的離心率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將正整數(shù)對(duì)作如下分組

則第個(gè)數(shù)對(duì)為________________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)的定義域?yàn)?/span>,滿足對(duì)任意,有.則稱為“形函數(shù)”;若函數(shù)定義域?yàn)?/span>,恒大于0,且對(duì)任意,恒有,則稱為“對(duì)數(shù)形函數(shù)”.

1)當(dāng)時(shí),判斷是否是“形函數(shù)”,并說(shuō)明理由;

2)當(dāng)時(shí),判斷是否是“對(duì)數(shù)形函數(shù)”,并說(shuō)明理由;

3)若函數(shù)形函數(shù),且滿足對(duì)任意都有,問(wèn)是否是“對(duì)數(shù)形函數(shù)”?請(qǐng)加以證明,如果不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】秸稈還田是當(dāng)今世界上普通重視的一項(xiàng)培肥地力的增產(chǎn)措施,在杜絕了秸稈焚燒所造成的大氣污染的同時(shí)還有增肥增產(chǎn)作用.某農(nóng)機(jī)戶為了達(dá)到在收割的同時(shí)讓秸稈還田,花元購(gòu)買(mǎi)了一臺(tái)新型聯(lián)合收割機(jī),每年用于收割可以收入萬(wàn)元(已減去所用柴油費(fèi));該收割機(jī)每年都要定期進(jìn)行維修保養(yǎng),第一年由廠方免費(fèi)維修保養(yǎng),第二年及以后由該農(nóng)機(jī)戶付費(fèi)維修保養(yǎng),所付費(fèi)用(元)與使用年數(shù)的關(guān)系為:,已知第二年付費(fèi)元,第五年付費(fèi)元.

(1)試求出該農(nóng)機(jī)戶用于維修保養(yǎng)的費(fèi)用(元)與使用年數(shù)的函數(shù)關(guān)系;

(2)這臺(tái)收割機(jī)使用多少年,可使平均收益最大?(收益=收入-維修保養(yǎng)費(fèi)用-購(gòu)買(mǎi)機(jī)械費(fèi)用)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從集合的所有非空子集中,等可能地取出個(gè).

(1)若,求所取子集的元素既有奇數(shù)又有偶數(shù)的概率;

(2)若,記所取子集的元素個(gè)數(shù)之差為,求的分布列及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在國(guó)慶周年慶典活動(dòng)中,東城區(qū)教育系統(tǒng)近名師生參與了國(guó)慶中心區(qū)合唱、方陣群眾游行、聯(lián)歡晚會(huì)及萬(wàn)只氣球保障等多項(xiàng)重點(diǎn)任務(wù).設(shè)是參與國(guó)慶中心區(qū)合唱的學(xué)校,是參與27方陣群眾游行的學(xué)校,是參與國(guó)慶聯(lián)歡晚會(huì)的學(xué)校.請(qǐng)用上述集合之間的運(yùn)算來(lái)表示:①既參與國(guó)慶中心區(qū)合唱又參與27方陣群眾游行的學(xué)校的集合為_____;②至少參與國(guó)慶中心區(qū)合唱與國(guó)慶聯(lián)歡晚會(huì)中一項(xiàng)的學(xué)校的集合為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案