【題目】已知?jiǎng)訄A過定點(diǎn)且與軸相切,點(diǎn)關(guān)于圓心的對(duì)稱點(diǎn)為,點(diǎn)的軌跡為.

1)求曲線的方程;

2)一條直線經(jīng)過點(diǎn),且交曲線、兩點(diǎn),點(diǎn)為直線上的動(dòng)點(diǎn).

①求證:不可能是鈍角;

②是否存在這樣的點(diǎn),使得是正三角形?若存在,求點(diǎn)的坐標(biāo):否則,說明理由.

【答案】1;(2)①證明見詳解;②存在,.

【解析】

(1)設(shè)出E點(diǎn)的坐標(biāo),根據(jù)EF中點(diǎn)為M,MF的距離等于M點(diǎn)縱坐標(biāo)的絕對(duì)值,整理化簡(jiǎn)即可求得;

2)①將證明鈍角的問題,轉(zhuǎn)化為是否可以成立的問題,從而進(jìn)行證明;

②假設(shè)存在這樣的點(diǎn),則C點(diǎn)到AB中點(diǎn)的距離等于,據(jù)此求解.

1)設(shè),由在圓上,且點(diǎn)關(guān)于圓心的對(duì)稱點(diǎn)為.

所以,則

化簡(jiǎn)得

所以曲線的方程為

2)①設(shè)直線,,,

所以,,

,

+1

不可能為鈍角

②假設(shè)存在這樣的點(diǎn),設(shè)中點(diǎn)為

由①知

,故

所以

,得

所以存在點(diǎn)滿足題意.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中不正確的個(gè)數(shù)是(

①若直線上有無(wú)數(shù)個(gè)點(diǎn)不在平面內(nèi),則;

②和兩條異面直線都相交的兩條直線異面;

③如果兩條平行直線中的一條與一個(gè)平面平行,那么另一條也與這個(gè)平面平行;

④一條直線和兩條異面直線都相交,則它們可以確定兩個(gè)平面.

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】意大利數(shù)學(xué)家列昂納多·斐波那契是第一個(gè)研究了印度和阿拉伯?dāng)?shù)學(xué)理論的歐洲人,斐波那契數(shù)列被譽(yù)為是最美的數(shù)列,斐波那契數(shù)列滿足:,,.若將數(shù)列的每一項(xiàng)按照下圖方法放進(jìn)格子里,每一小格子的邊長(zhǎng)為1,記前項(xiàng)所占的格子的面積之和為,每段螺旋線與其所在的正方形所圍成的扇形面積為,則下列結(jié)論正確的是(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列1,1,21,2,41,24,8,1,2,48,16,其中第一項(xiàng)是,接下來(lái)的兩項(xiàng)是,再接下來(lái)的三項(xiàng)是,,依此類推那么該數(shù)列的前50項(xiàng)和為  

A. 1044 B. 1024 C. 1045 D. 1025

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中,底面ABC,點(diǎn)D,E分別為棱PA,PC的中點(diǎn),M是線段AD的中點(diǎn),N是線段BC的中點(diǎn),

求證:平面BDE;

求直線MN到平面BDE的距離;

求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知, .

1)若的充分不必要條件,求實(shí)數(shù)的取值范圍;

(2)若為真命題,“”為假命題,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)是橢圓C上的一點(diǎn),橢圓C的離心率與雙曲線的離心率互為倒數(shù),斜率為直線l交橢圓CB,D兩點(diǎn),且AB、D三點(diǎn)互不重合.

1)求橢圓C的方程;

2)若分別為直線AB,AD的斜率,求證:為定值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

(1)已知為自然對(duì)數(shù)的底數(shù),求函數(shù)處的切線方程;

(2)當(dāng)時(shí),方程有唯一實(shí)數(shù)根,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,是某海灣旅游區(qū)的一角,其中,為了營(yíng)造更加優(yōu)美的旅游環(huán)境,旅游區(qū)管委會(huì)決定在直線海岸上分別修建觀光長(zhǎng)廊AC,其中是寬長(zhǎng)廊,造價(jià)是元/米,是窄長(zhǎng)廊,造價(jià)是元/米,兩段長(zhǎng)廊的總造價(jià)為120萬(wàn)元,同時(shí)在線段上靠近點(diǎn)的三等分點(diǎn)處建一個(gè)觀光平臺(tái),并建水上直線通道(平臺(tái)大小忽略不計(jì)),水上通道的造價(jià)是元/米.

(1) 若規(guī)劃在三角形區(qū)域內(nèi)開發(fā)水上游樂項(xiàng)目,要求的面積最大,那么的長(zhǎng)度分別為多少米?

(2) 在(1)的條件下,建直線通道還需要多少錢?

查看答案和解析>>

同步練習(xí)冊(cè)答案