設(shè)函數(shù)

(Ⅰ)若函數(shù)處取得極小值是,求的值;  

(Ⅱ)求函數(shù)的單調(diào)遞增區(qū)間;

(Ⅲ)若函數(shù)上有且只有一個極值點, 求實數(shù)的取值范圍.

 

【答案】

解:(I)    .......3分  

   得           ......4分

           解得:                    ………5分

(II)  

                                 …..7分

當(dāng),即的單調(diào)遞增區(qū)間為….8分

當(dāng),即的單調(diào)遞增區(qū)間為….9分

當(dāng),即的單調(diào)遞增區(qū)間為…..10分

(Ⅲ)由題意可得:……12分

                                                 

     的取值范圍                                       ……14分

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=2x+
a
2x
-1
(a為實數(shù)).
(Ⅰ)當(dāng)a=0時,求方程|f(x)|=
1
2
的根;
(Ⅱ)當(dāng)a=-1時,
(ⅰ)若對于任意t∈(1,4],不等式f(t2-2t)-f(2t2-k)>0恒成立,求k的范圍;
(ⅱ)設(shè)函數(shù)g(x)=2x+b,若對任意的x1∈[0,1],總存在著x2∈[0,1],使得f(x1)=g(x2),求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在實數(shù)集上的函數(shù)fn(x)=xn,(x∈N*),其導(dǎo)函數(shù)記為fn′(x),且滿足fn′[ax1+(1-a)x2]  =
f2(x2)-f2(x1x2-x1
,其中a,x1,x2為常數(shù),x1≠x2.設(shè)函數(shù)g(x)=f1(x)+mf2(x)-lnf3(x),(m∈R且m≠0).
(Ⅰ)求實數(shù)a的值;
(Ⅱ)若函數(shù)g(x)無極值點,其導(dǎo)函數(shù)g′(x)有零點,求m的值;
(Ⅲ)求函數(shù)g(x)在x∈[0,a]的圖象上任一點處的切線斜率k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于定義域為[0,1]的函數(shù)f(x),若同時滿足以下三個條件:
①f(1)=1; 
②?x∈[0,1],總有f(x)≥0; 
③當(dāng)x1≥0,x2≥0,x1+x2≤1時,都有f(x1+x2)≥f(x1)+f(x2),則稱函數(shù)f(x)為理想函數(shù).
(Ⅰ)若函數(shù)f(x)為理想函數(shù),求f(0).
(Ⅱ)判斷函數(shù)g(x)=2x-1(x∈[0,1])和函數(shù)h(x)=sin
π2
x
(x∈[0,1])是否為理想函數(shù)?若是,予以證明;若不是,說明理由.
(III)設(shè)函數(shù)f(x)為理想函數(shù),若?x0∈[0,1],使f(x0)∈[0,1],且f[f(x0)]=x0,求證:f(x0)=x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),給出定義:設(shè)f′(x)是函數(shù)y=f(x)的導(dǎo)數(shù),f″是f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實數(shù)解x0,則稱點(x0,f(x0))為函數(shù)y=f(x)的“拐點”.某同學(xué)經(jīng)過探究發(fā)現(xiàn):任何一個三次函數(shù)都有“拐點”;任何一個三次函數(shù)都有對稱中心,且“拐點”就是對稱中心.請你根據(jù)這一發(fā)現(xiàn),求:函數(shù)f(x)=
1
3
x3-
1
2
x2+3x-
5
12
對稱中心為
1
2
,1)
1
2
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•溫州一模)設(shè)函數(shù)y=f(x),我們把滿足方程f(x)=0的值x叫做函數(shù)y=f(x)的零點.現(xiàn)給出函數(shù)f(x)=x3-3x2+ax+a2-10,若它是R上的單調(diào)函數(shù),且1是它的零點.
(Ⅰ)求實數(shù)a的值;
(Ⅱ)設(shè)Q1(x1,0),若過P1(x1,f(x1))作函數(shù)y=f(x)的圖象的切線與x軸交于點Q2(x2,0),再過P2(x2,f(x2))作函數(shù)y=f(x)的圖象的切線與x軸交于點Q3(x3,0),…,依此下去,過Pn(xn,f(xn))(n∈N*)作函數(shù)y=f(x)的圖象的切線與x軸交于點Qn+1(xn+1,0),….
若x1=2,xn>1,求xn

查看答案和解析>>

同步練習(xí)冊答案