已知函數(shù)g(x)=,f(x)=g(x)-ax(a>0).
(I)求函數(shù)g(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)在(1,+∞)上是減函數(shù),求實(shí)數(shù)a的最小值;
(Ⅲ)當(dāng)a≥時(shí),若?x1,x2∈[e,e2]使f(x1)≤f′(x2)+a成立,求實(shí)數(shù)a的取值范圍.
【答案】分析:(I)求導(dǎo)函數(shù),利用導(dǎo)數(shù)的正負(fù)可得函數(shù)的單調(diào)區(qū)間;
(Ⅱ)由函數(shù)f(x)在(1,+∞)上是減函數(shù),可得-a≤0在(1,+∞)上恒成立,求出導(dǎo)函數(shù)的最值,即可求實(shí)數(shù)a的最小值;
(Ⅲ)當(dāng)a≥時(shí),若?x1,x2∈[e,e2],使f(x1)≤f′(x2)+a成立,等價(jià)于x∈[e,e2],使f(x)min≤f′(x)max+a.求出最值,即可確定a的取值范圍.
解答:解:函數(shù)g(x),f(x)的定義域均為(0,1)∪(1,+∞),且f(x)=(a>0)
(I)∵,∴x>e時(shí),g′(x)>0,0<x<e且x≠1時(shí),g′(x)<0,
∴函數(shù)g(x)的單調(diào)增區(qū)間是(e,+∞),單調(diào)減區(qū)間為(0,1),(1,e);
(Ⅱ)∵函數(shù)f(x)在(1,+∞)上是減函數(shù),
-a≤0在(1,+∞)上恒成立
=+
∴當(dāng),即x=e2時(shí),


∴實(shí)數(shù)a的最小值;
(Ⅲ)當(dāng)a≥時(shí),若?x1,x2∈[e,e2],使f(x1)≤f′(x2)+a成立,等價(jià)于x∈[e,e2],使f(x)min≤f′(x)max+a.
由(Ⅱ)知,x∈[e,e2],f′(x)max=
當(dāng)a≥時(shí),可得f(x)在[e,e2]上為減函數(shù),∴f(x)min=f(e2)=

,又,故實(shí)數(shù)a的取值范圍
點(diǎn)評(píng):本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查函數(shù)的單調(diào)性,考查函數(shù)的最值,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在區(qū)間(1,+∞)上的函數(shù),其導(dǎo)函數(shù)為f′(x).如果存在實(shí)數(shù)a和函數(shù)h(x),其中h(x)對(duì)任意的x∈(1,+∞)都有h(x)>0,使得f′(x)=h(x)(x2-ax+1),則稱函數(shù)f(x)具有性質(zhì)P(a),設(shè)函數(shù)f(x)=lnx+
b+2x+1
(x>1)
,其中b為實(shí)數(shù).
(1)①求證:函數(shù)f(x)具有性質(zhì)P(b);
②求函數(shù)f(x)的單調(diào)區(qū)間.
(2)已知函數(shù)g(x)具有性質(zhì)P(2),給定x1,x2∈(1,+∞),x1<x2,設(shè)m為實(shí)數(shù),α=mx1+(1-m)x2,β=(1-m)x1+mx2,α>1,β>1,若|g(α)-g(β)|<|g(x1)-g(x2)|,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)的圖象與坐標(biāo)軸分別交于點(diǎn)(1,0)、(3,0)、(0,2).
(Ⅰ)求f(x)的表達(dá)式;
(Ⅱ)已知函數(shù)g(x)=log2x的定義域?yàn)閧x|f(x)<2},求函數(shù)g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)g(x+2)=2x-3,則函數(shù)g(x)=
2x-7
2x-7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)g(x)=asinx+bcosx+c
(1)當(dāng)b=0時(shí),求g(x)的值域;
(2)當(dāng)a=1,c=0時(shí),函數(shù)g(x)的圖象關(guān)于x=
3
對(duì)稱,求函數(shù)y=bsinx+acosx的對(duì)稱軸.
(3)若g(x)圖象上有一個(gè)最低點(diǎn)(
11π
6
,1)
,如果圖象上每點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)縮短到原來的
3
π
倍,然后向左平移1個(gè)單位可得y=f(x)的圖象,又知f(x)=3的所有正根從小到大依次為x1,x2,x3,…,xn,…,且xn-xn-1=3(n≥2),求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•成都模擬)若函數(shù)f(x)滿足:在定義域內(nèi)存在實(shí)數(shù)x0,使f(x0+k)=f(x0)+f(k)(k為常數(shù)),則稱“f(x)關(guān)于k可線性分解”
(1)函數(shù)f(x)=2x+x2是否關(guān)于1可線性分解?請(qǐng)說明理由;
(2)已知函數(shù)g(x)=lnx-ax+1(a>0)關(guān)于a可線性分解,求a的范圍;
(3)在(2)的條件下,當(dāng)a取最小整數(shù)時(shí),求g(x)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案