解:設(shè)|PB|=r.
∵圓P與圓A內(nèi)切,圓A的半徑為10,
∴兩圓的圓心距|PA|=10-r,
即|PA|+|PB|=10(大于|AB|).
∴點(diǎn)P的軌跡是以A、B兩點(diǎn)為焦點(diǎn)的橢圓.
∴
∴b2=a2-c2=25-9=16,
即點(diǎn)P的軌跡方程為
=1.
點(diǎn)評(píng):(1)本例的解法抓住兩圓內(nèi)切的特點(diǎn),得出|PA|+|PB|=10,所以點(diǎn)P的軌跡方程是以A、B為焦點(diǎn)的橢圓的標(biāo)準(zhǔn)方程,這就把求點(diǎn)P的軌跡方程的問題轉(zhuǎn)化成了求a2、b2的問題.
(2)轉(zhuǎn)化題中的條件,利用定義判斷出點(diǎn)的軌跡,再根據(jù)軌跡方程特征(類似于公式)用待定系數(shù)法求出常數(shù),簡便快捷.在條件轉(zhuǎn)化過程中,要充分利用其幾何性質(zhì).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
|
A、6 | B、4 | C、2 | D、0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
3 |
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
3 |
3 |
4 |
5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com