如圖所示,程序框圖(算法流程圖)的輸出值s=( 。
A、-1B、0C、1D、3
考點(diǎn):程序框圖,循環(huán)結(jié)構(gòu)
專題:算法和程序框圖
分析:根據(jù)框圖的流程依次計(jì)算程序運(yùn)行的結(jié)果,直到滿足條件i>4,確定輸出s的值.
解答: 解:由程序框圖知:第一次循環(huán),s=1×(3-1)+1=3,i=2;
第二次循環(huán),s=3(3-2)+1=4,i=3;
第三次循環(huán),s=4×(3-3)+1=1,i=4;
第四次循環(huán),s=1×(3-4)+1=0,i=5.
滿足條件i>4,跳出循環(huán)體,輸出s=0.
故選:B.
點(diǎn)評:本題考查了直到型循環(huán)結(jié)構(gòu)的程序框圖,根據(jù)框圖的流程依次計(jì)算程序運(yùn)行的結(jié)果是解答此類問題的常用方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

命題:“對任意k>0,方程x2+x-k=0有實(shí)根”的否定
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出以下五個(gè)命題:
①對于任意的a>0,b>0,都有algb=blga成立;
②直線y=x•tanα+b的傾斜角等于α;
③已知異面直線a,b成60°角,則過空間一點(diǎn)P且與a,b均成60°角的直線有且只有兩條;
④在平面內(nèi),如果將單位向量的起點(diǎn)移到同一個(gè)點(diǎn),那么終點(diǎn)的軌跡是一個(gè)半徑為1的圓;
⑤已知函數(shù)y=f(x),若存在常數(shù)M>0,使|f(x)|<M•|x|對定義域內(nèi)的任意x均成立,則稱f(x)為“倍約束函數(shù)”.對于函數(shù)f(x)=
x2-1
-1,該函數(shù)是倍約束函數(shù).
其中真命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)y=cos2x的圖象向右平移
π
6
個(gè)單位,得到y(tǒng)=cos(2x+φ),φ∈(-π,π]的圖象,則φ的值為(  )
A、
π
6
B、-
π
6
C、
π
3
D、-
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y2=2px(p>0)的焦點(diǎn)作直線交拋物線于P(x1,y1)、Q(x2,y2)兩點(diǎn),若x1+x2=2,|PQ|=4,則拋物線方程是( 。
A、y2=4x
B、y2=8x
C、y2=2x
D、y2=6x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下有四種說法:
①若p或q為真,p且q為假,則p與q必為一真一假;
②若數(shù)列{an}的前n項(xiàng)和為Sn=n2+n+1,n∈N*,則an=2n,n∈N*;
③若實(shí)數(shù)t滿足f(t)=-t,則稱t是函數(shù)f(x)的一個(gè)次不動(dòng)點(diǎn).設(shè)函數(shù)f(x)=lnx與函數(shù)g(x)=ex(其中e為自然對數(shù)的底數(shù))的所有次不動(dòng)點(diǎn)之和為m,則m=0;
④若定義在R上的函數(shù)f(x)滿足f(x+2)=-f(x-1),則6為函數(shù)f(x)的周期.
以上四種說法,其中說法正確的是(  )
A、①③B、③④
C、①②③D、①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法正確的是(  )
A、鈍角不一定是第二象限的角
B、終邊相同的角一定相等
C、終邊與始邊重合的角是零角
D、相等的角終邊相同

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從某學(xué)校的800名男生中隨機(jī)抽取50名測量身高,被測學(xué)生身高全部介于155cm和195cm之間,將測量結(jié)果按如下方式分成八組:第一組[155,160),第二組[160,165),…,第八組[190,195],如圖是按上述分組方法得到的頻率分布直方圖的一部分,已知第一組與第八組人數(shù)相同,第六組的人數(shù)為4人.
(Ⅰ)求第七組的頻率并估計(jì)該校800名男生中身高在180cm以上(含180cm)的人數(shù);
(Ⅱ)從第六組和第八組的男生中隨機(jī)抽取兩名男生,記他們的身高分別為x,y,事件E={|x-y|≤5},求P(E).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinα=
2
5
5
,sin(α-β)=
10
10
,且α,β∈(0,
π
2
).求:
(Ⅰ)cos(2α-β)的值.
(Ⅱ)β的值.

查看答案和解析>>

同步練習(xí)冊答案