精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=是(-∞,+∞)上的減函數,則a的取值范圍是
(  )
A.(0,3)B.(0,3]C.(0,2)D.(0,2]
D
因為f(x)為(-∞,+∞)上的減函數,
所以解得0<a≤2.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

定義:若上為增函數,則稱為“k次比增函數”,其中. 已知其中e為自然對數的底數.
(1)若是“1次比增函數”,求實數a的取值范圍;
(2)當時,求函數上的最小值;
(3)求證:.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知f(x)是偶函數,且f(x)在[0,+∞)上是增函數,如果f(ax+1)≤f(x-2)在x∈[,1]上恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

[2013·吉林調研]已知定義在R上的函數f(x)滿足f(x)+f(-x)=0,且在(-∞,0)上單調遞增,如果x1+x2<0且x1x2<0,則f(x1)+f(x2)的值(  )
A.可能為0B.恒大于0
C.恒小于0D.可正可負

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

設定義域為的單調函數,對任意的,都有,若是方程的一個解,則可能存在的區(qū)間是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知函數y=f(x)是定義在R上的增函數,函數y=f(x-1)的圖象關于點(1,0)對稱.若對任意的x,y∈R,不等式f(x2-6x+21)+f(y2-8y)<0恒成立,則當x>3時,x2+y2的取值范圍是  (  ).
A.(3,7)B.(9,25) C.(13,49)D.(9, 49)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知定義域為R的函數f(x)滿足:f(4)=-3,且對任意x∈R總有f′(x)<3,則不等式f(x)<3x-15的解集為(  )
A.(-∞,4)
B.(-∞,-4)
C.(-∞,-4)∪(4,+∞)
D.(4,+∞)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

設f(x)是奇函數,且在(0,+∞)內是增函數,又f(-3)=0,則(x-3)f(x-3)<0的解集是(   )
A.(-3,0)或(3,+∞)B.(-3,3)
C.(0,3)D.(0,3)或(3,6)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

如圖,用一根鐵絲折成一個扇形框架,要求框架所圍扇形面積為定值S,半徑為r,弧長為l,則使用鐵絲長度最小值時應滿足的條件為(  )
A.r=lB.2r=lC.r=2lD.3r=l

查看答案和解析>>

同步練習冊答案