在平面直角坐標(biāo)系xoy中,已知圓心在第二象限、半徑為的圓C與直線y=x相切于坐標(biāo)原點(diǎn)O.橢圓與圓C的一個(gè)交點(diǎn)到橢圓兩焦點(diǎn)的距離之和為10.

(1)求圓C的方程;

(2)試探究圓C上是否存在異于原點(diǎn)的點(diǎn)Q,使Q到橢圓右焦點(diǎn)F的距離等于線段OF的長(zhǎng).若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

答案:
解析:

  解:(1)設(shè)圓心坐標(biāo)為(m,n)(m<0,n>0),則該圓的方程為(x-m)2+(y-n)2=8

  已知該圓與直線y=x相切,那么圓心到該直線的距離等于圓的半徑,則

  =2 即=4、

  又圓與直線切于原點(diǎn),將點(diǎn)(0,0)代入得m2+n2=8、

  聯(lián)立方程①和②組成方程組解得 故圓的方程為(x+2)2+(y-2)2=8

  (2)=5,∴a2=25,則橢圓的方程為

  其焦距c==4,右焦點(diǎn)為(4,0),那么=4.

  要探求是否存在異于原點(diǎn)的點(diǎn)Q,使得該點(diǎn)到右焦點(diǎn)F的距離等于的長(zhǎng)度4,我們可以轉(zhuǎn)化為探求以右焦點(diǎn)F為頂點(diǎn),半徑為4的圓(x-4)2+y2=8與(1)所求的圓的交點(diǎn)數(shù).

  通過(guò)聯(lián)立兩圓的方程解得x=,y=

  即存在異于原點(diǎn)的點(diǎn)Q(),使得該點(diǎn)到右焦點(diǎn)F的距離等于的長(zhǎng).14分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xoy中,已知圓心在直線y=x+4上,半徑為2
2
的圓C經(jīng)過(guò)坐標(biāo)原點(diǎn)O,橢圓
x2
a2
+
y2
9
=1(a>0)
與圓C的一個(gè)交點(diǎn)到橢圓兩焦點(diǎn)的距離之和為10.
(1)求圓C的方程;
(2)若F為橢圓的右焦點(diǎn),點(diǎn)P在圓C上,且滿足PF=4,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,銳角α和鈍角β的終邊分別與單位圓交于A,B兩點(diǎn).若點(diǎn)A的橫坐標(biāo)是
3
5
,點(diǎn)B的縱坐標(biāo)是
12
13
,則sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,若焦點(diǎn)在x軸的橢圓
x2
m
+
y2
3
=1
的離心率為
1
2
,則m的值為
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•泰州三模)選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.設(shè)直線AC與BD的交點(diǎn)為P,求動(dòng)點(diǎn)P的軌跡的參數(shù)方程(以t為參數(shù))及普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•東莞一模)在平面直角坐標(biāo)系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點(diǎn)為F1(-1,0),且橢圓C的離心率e=
1
2

(1)求橢圓C的方程;
(2)設(shè)橢圓C的上下頂點(diǎn)分別為A1,A2,Q是橢圓C上異于A1,A2的任一點(diǎn),直線QA1,QA2分別交x軸于點(diǎn)S,T,證明:|OS|•|OT|為定值,并求出該定值;
(3)在橢圓C上,是否存在點(diǎn)M(m,n),使得直線l:mx+ny=2與圓O:x2+y2=
16
7
相交于不同的兩點(diǎn)A、B,且△OAB的面積最大?若存在,求出點(diǎn)M的坐標(biāo)及對(duì)應(yīng)的△OAB的面積;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案