分析 根據(jù)條件f(x+2)=f(-x),得到函數(shù)的周期是4,利用函數(shù)的奇偶性,將條件進(jìn)行轉(zhuǎn)化即可得到結(jié)論.
解答 解:∵f(x+2)=f(-x),f(x)關(guān)于x=1對稱,函數(shù)是奇函數(shù),f(x+2)=f(-x)=-f(x),f(x+4)=-f(x+2)=f(x),可得函數(shù)是周期函數(shù).
∴函數(shù)f(x)的周期是4,
∴f(2015)=f(504×4-1)=f(-1)=-f(1),
∵當(dāng)x∈(0,2)時,f(x)=4x,
∴f(1)=4,
∴f(2015)=-f(1)=-4,
故答案為:-4.
點(diǎn)評 本題主要考查函數(shù)值的計算,抽象函數(shù)的應(yīng)用,根據(jù)函數(shù)奇偶性和周期性進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | b<-1或b>1 | B. | -1<b<1 | C. | b>1 | D. | b>0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com