14.已知x>0,y>0,lg2x+lg8y=lg2,則$\frac{x+y}{xy}$的最小值是$2\sqrt{3}+4$.

分析 直接利用對(duì)數(shù)的運(yùn)算法則化簡表達(dá)式,然后利用基本不等式求解最值.

解答 解:x>0,y>0,lg2x+lg8y=lg2,
可得x+3y=1.
$\frac{x+y}{xy}$=$\frac{(x+y)(x+3y)}{xy}$=$\frac{{x}^{2}+3{y}^{2}+4xy}{xy}$=$\frac{{x}^{2}+3{y}^{2}}{xy}+4$≥$\frac{2\sqrt{{x}^{2}•3{y}^{2}}}{xy}+4$=$2\sqrt{3}+4$.
當(dāng)且僅當(dāng)x=$\sqrt{3}y$,x+3y=1,即y=$\frac{1}{3+\sqrt{3}}$=$\frac{3-\sqrt{3}}{6}$,x=$\frac{\sqrt{3}}{3+\sqrt{3}}$=$\frac{\sqrt{3}-1}{2}$時(shí)取等號(hào).
$\frac{x+y}{xy}$的最小值是$2\sqrt{3}+4$.
故答案為:$2\sqrt{3}+4$.

點(diǎn)評(píng) 本題考查基本不等式的性質(zhì)與對(duì)數(shù)的運(yùn)算,注意基本不等式常見的變形形式與運(yùn)用,如本題中,1的代換.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)f(x)=1-x2的定義域?yàn)镽.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.定義在R上的函數(shù)y=f(x),f(0)≠0,當(dāng)x>0時(shí),f(x)>1,對(duì)任意的a,b∈R都有f(a+b)=f(a)•f(b)且對(duì)任意的x∈R,恒有f(x)>0;
(1)求f(0);
(2)證明:函數(shù)y=f(x)在R上是增函數(shù);
(3)若f(x)•f(2x-x2)>1,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若關(guān)于x的不等式x2+ax-c<0的解集為{x|-2<x<1},則函數(shù)g(x)=eax•x2的單調(diào)遞減區(qū)間為( 。
A.(-∞,0)B.(-∞,-2)C.(-2,-1)D.(-2,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知$\overrightarrow a=(2,1),\overrightarrow b=(-1,3)$,向量$\overrightarrow c$滿足:$\overrightarrow a•\overrightarrow c=4,\overrightarrow b•\overrightarrow c=-9$,求:
(1)向量$\overrightarrow a$在向量$\overrightarrow b$上的投影;
(2)向量$\overrightarrow c$的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)f(x)=$\frac{1}{3}$x3-x2-3x-1,則函數(shù)g(x)=f(x)-k恰有三個(gè)零點(diǎn),則實(shí)數(shù)k的取值范圍是(-10,$\frac{2}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在空間四邊形ABCD中,E,F(xiàn)分別是AB和AC的中點(diǎn),則BC和平面DEF的位置關(guān)系是( 。
A.相交B.平行C.在平面內(nèi)D.異面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.光線由點(diǎn)A(-1,4)射出,遇到直線l:2x-3y-6=0后被反射,已知點(diǎn)$B(3,\frac{62}{13})$在反射光線上,則反射光線所在的直線方程為13x-26y+85=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列條件中可以確定兩條直線平行的是( 。
A.垂直同一條直線的兩條直線B.平行同一平面的兩條直線
C.平行同一條直線的兩條直線D.和同一平面所成角相等

查看答案和解析>>

同步練習(xí)冊答案