設(shè)函數(shù) 
(Ⅰ)求函數(shù)的極值點(diǎn);
(Ⅱ)當(dāng)p>0時(shí),若對(duì)任意的x>0,恒有,求p的取值范圍;
(Ⅲ)證明:
(Ⅰ)當(dāng)p>0 時(shí),有唯一的極大值點(diǎn)
(Ⅱ)p的取值范圍為[1,+∞
(Ⅲ)見解析
(1),
當(dāng) 上無極值點(diǎn)
當(dāng)p>0時(shí),令的變化情況如下表:
x
(0,)



+
0



極大值

從上表可以看出:當(dāng)p>0 時(shí),有唯一的極大值點(diǎn) 
(Ⅱ)當(dāng)p>0時(shí)在處取得極大值,此極大值也是最大值,
要使恒成立,只需,     ∴
∴p的取值范圍為[1,+∞ 
(Ⅲ)令p=1,由(Ⅱ)知,



 
 


∴結(jié)論成立
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)是函數(shù)的兩個(gè)極值點(diǎn),且
(Ⅰ)求的取值范圍;
(Ⅱ)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知函數(shù)
(Ⅰ)求函數(shù)的極大值;
(Ⅱ)當(dāng)時(shí),求函數(shù)的值域;
(Ⅲ)已知,當(dāng)時(shí),恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù)的導(dǎo)數(shù),則數(shù)列的前n項(xiàng)
和為(   ).
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分)設(shè)函數(shù)(1)當(dāng)時(shí),求函數(shù)上的最大值;(2)記函數(shù),若函數(shù)有零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè),函數(shù)
(Ⅰ)若是函數(shù)的極值點(diǎn),求實(shí)數(shù)的值;
(Ⅱ)若函數(shù)上是單調(diào)減函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)上是增函數(shù).
(I)求實(shí)數(shù)a的取值范圍;
(II)設(shè),求函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)設(shè)函數(shù)(1)求函數(shù);?(2)若存在常數(shù)k和b,使得函數(shù)對(duì)其定義域內(nèi)的任意實(shí)數(shù)分別滿足則稱直線的“隔離直線”.試問:函數(shù)是否存在“隔離直線”?若存在,求出“隔離直線”方程,不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

                        已知函數(shù)
(I)求函數(shù)的極值;
(II)若對(duì)任意的的取值范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案