求值:cos(-
3
)
=
-
1
2
-
1
2
分析:準(zhǔn)確應(yīng)用誘導(dǎo)公式化簡(jiǎn)計(jì)算即可.
解答:解:cos(-
3
)
=cos
3
=cos(π-
π
3
)=-cos
π
3
=-
1
2

故答案為:-
1
2
點(diǎn)評(píng):本題考查誘導(dǎo)公式的運(yùn)用,正確運(yùn)用誘導(dǎo)公式是關(guān)鍵.化簡(jiǎn)是對(duì)角的處理一般是“負(fù)角化正角,大角化小角”.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知角α終邊上一點(diǎn)P(-4a,3a)
(1)求sinα,cosα,tanα;
(2)求值:
cos(
π
2
+α)sin(-π-α)
cos(
11π
2
-α)sin(
9
2
π+α)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
p
=(2cosωx+2sinωx,f(x))
,
q
=(1,cosωx)
,ω>0且
p
q
,函數(shù)f(x)圖象上相鄰兩條對(duì)稱(chēng)軸之間的距離是2π.
(1)求ω值;
(2)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(3)設(shè)函數(shù)g(x)=f(x+φ),φ∈(0,π),若g(x)為偶函數(shù),求g(x)的最大值及相應(yīng)的x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C的對(duì)邊長(zhǎng)分別為a,b,c,△ABC的面積為S,且4S=
3
(b2+c2-a2)

(1)求角A;    (2)求值:cos(80°-A)[1-
3
tan(A-10°)]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(
3
sin(π-ωx),cosωx),
b
=(cosωx,-cosωx)
,函數(shù)f(x)=
a
b
+
1
2
(ω>0)的圖象的兩相鄰對(duì)稱(chēng)軸間的距離為
π
4

(1)求ω值;
(2)若cosx≥
1
2
,x∈(0,π)
,且f(x)=m有且僅有一個(gè)實(shí)根,求實(shí)數(shù)m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案