若函數(shù)具有性質(zhì):①為偶函數(shù),②對任意都有,所以則函數(shù)的解析式可以是:(只需寫出滿足條件的一個解析式即可)

 

【答案】

【解析】

試題分析:由題意可知函數(shù)為偶函數(shù)而且為函數(shù)的一條對稱軸,,等都符合要求,寫出一個即可.

考點(diǎn):本小題主要考查函數(shù)的奇偶性和對稱性的應(yīng)用,考查學(xué)生對函數(shù)性質(zhì)的掌握和應(yīng)用能力.

點(diǎn)評:函數(shù)的奇偶性、單調(diào)性和周期性、對稱性等是函數(shù)的重要的幾何性質(zhì),要牢固掌握,靈活應(yīng)用解題.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013年上海市虹口區(qū)高考一模數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分18分)如果函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013042808365932854361/SYS201304280837320160900819_ST.files/image002.png">,對于定義域內(nèi)的任意,存在實(shí)數(shù)使得成立,則稱此函數(shù)具有“性質(zhì)”.

(1)判斷函數(shù)是否具有“性質(zhì)”,若具有“性質(zhì)”求出所有的值;若不具有“性質(zhì)”,請說明理由.

(2)已知具有“性質(zhì)”,且當(dāng),求上的最大值.

(3)設(shè)函數(shù)具有“性質(zhì)”,且當(dāng)時,.若交點(diǎn)個數(shù)為2013個,求的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年高考試題分項版理科數(shù)學(xué)之專題十七選修系列 題型:解答題

(16分)設(shè)使定義在區(qū)間上的函數(shù),其導(dǎo)函數(shù)為.如果存在實(shí)數(shù)和函數(shù),其中對任意的都有>0,使得,則稱函數(shù)具有性質(zhì).

(1)設(shè)函數(shù),其中為實(shí)數(shù)

①求證:函數(shù)具有性質(zhì)

②求函數(shù)的單調(diào)區(qū)間

(2)已知函數(shù)具有性質(zhì),給定,,且,若||<||,求的取值范圍

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年高考試題分項版理科數(shù)學(xué)之專題十一概率統(tǒng)計 題型:解答題

(16分)設(shè)使定義在區(qū)間上的函數(shù),其導(dǎo)函數(shù)為.如果存在實(shí)數(shù)和函數(shù),其中對任意的都有>0,使得,則稱函數(shù)具有性質(zhì).

(1)設(shè)函數(shù),其中為實(shí)數(shù)

①求證:函數(shù)具有性質(zhì)

②求函數(shù)的單調(diào)區(qū)間

(2)已知函數(shù)具有性質(zhì),給定,,且,若||<||,求的取值范圍

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年高考試題分項版理科數(shù)學(xué)之專題九立體幾何 題型:解答題

(16分)設(shè)使定義在區(qū)間上的函數(shù),其導(dǎo)函數(shù)為.如果存在實(shí)數(shù)和函數(shù),其中對任意的都有>0,使得,則稱函數(shù)具有性質(zhì).

(1)設(shè)函數(shù),其中為實(shí)數(shù)

①求證:函數(shù)具有性質(zhì)

②求函數(shù)的單調(diào)區(qū)間

(2)已知函數(shù)具有性質(zhì),給定,,且,若||<||,求的取值范圍

 

查看答案和解析>>

同步練習(xí)冊答案