若把函數(shù)y=
3
sinx+cosx
的圖象向右平移m(m>0)個(gè)單位后所得圖象關(guān)于y軸對(duì)稱,則m的最小值為
 
分析:先根據(jù)左加右減的原則進(jìn)行平移得到平移后的解析式,再由其關(guān)于y軸對(duì)稱得到2sin(x-m+
π
6
)=2sin(-x-m+
π
6
),再由兩角和與差的正弦公式展開(kāi)后由三角函數(shù)的性質(zhì)可求得m的值,從而得到最小值.
解答:解:y=
3
sinx+cosx
=2sin(x+
π
6
)然后向右平移m(m>0)個(gè)單位后得到
y=2sin(x-m+
π
6
)的圖象關(guān)于y軸對(duì)稱
∴2sin(x-m+
π
6
)=2sin(-x-m+
π
6

∴sinxcos(-m+
π
6
)+cosxsin(-m+
π
6
)=-sinxcos(-m+
π
6
)+cosxsin(-m+
π
6

∴sinxcos(-m+
π
6
)=0∴cos(-m+
π
6
)=0
∴-m+
π
6
=
π
2
+kπ
,m=-
π
3
+kπ

∴m的最小值為
3

故答案為:為
3
點(diǎn)評(píng):本題主要考查三角函數(shù)的平移和兩角和與差的正弦公式.注意平移時(shí)要根據(jù)左加右減上加下減的原則進(jìn)行平移.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以下命題正確的是
 

①把函數(shù)y=3sin(2x+
π
3
)
的圖象向右平移
π
6
個(gè)單位,得到y(tǒng)=3sin2x的圖象;
②一平面內(nèi)兩條曲線的方程分別是f1(x,y)=0,f2(x,y)=0,它們的交點(diǎn)是P(x0,y0),則方程f1(x,y)+f2(x,y)=0表示的曲線經(jīng)過(guò)點(diǎn)P;
③ABCD為長(zhǎng)方形,AB=2,BC=1,O為AB的中點(diǎn),在長(zhǎng)方形ABCD內(nèi)隨機(jī)取一點(diǎn),取得的點(diǎn)到O的距離大于1的概率為1-
π
2
;
④若等差數(shù)列{an}前n項(xiàng)為Sn,則三點(diǎn)(10,
S10
10
),(100,
S100
100
),(110,
S110
110
)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題中,正確命題的序號(hào)是
①④⑤
①④⑤

①若sin(3π+α)=-
1
2
α∈(
π
2
,π)
,則sin(
2
-α)的值是
3
2
;
②終邊在y軸上的角的集合是{α|a=
2
,k∈Z
};
③在同一坐標(biāo)系中,函數(shù)y=sinx的圖象與函數(shù)Y=X的圖象有3個(gè)公共點(diǎn);
④把函數(shù)y=3sin(2x+
π
3
)的圖象向右平移
π
6
得到y(tǒng)=3sin2x的圖象;
⑤函數(shù)y=sin(x-
π
3
)的一個(gè)對(duì)稱中心是(-
3
,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有以下四個(gè)命題:
①若命題p:?x∈R,x>sinx,則?p:?x∈R,x<sinx
②函數(shù)y=sin(x-
π
2
)在[0,π
]在R上是奇函數(shù).
③把函數(shù)y=3sin(2x+
π
3
)的圖象向右平移
π
6
向左平移
π
6
得到y(tǒng)=3sin2x的圖象.
④若函數(shù)f(x)=-cos2x+
1
2
(x∈R),則f(x)是最小正周期為φ=
π
3
的偶函數(shù)
⑤設(shè)圓x2+y2-4x-2y-8=0上有關(guān)于直線ax+2by-2=0(a,b>0)對(duì)稱的兩點(diǎn),則
1
a
+
2
b
的最小值為3+2
2

其中正確命題的序號(hào)是
 
(把你認(rèn)為正確命題的序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:
①函數(shù)y=tanx的圖象關(guān)于點(diǎn)(kπ,0)(k∈Z)對(duì)稱;
②若向量a、b、c滿足a•b=a•c且a≠0,則b=c;
③把函數(shù)y=3sin(2x+
π
3
)
的圖象向右平移
π
6
得到y(tǒng)=3sin2x的圖象;
④若數(shù)列{an}既是等差數(shù)列又是等比數(shù)列,則an=an+1(n∈N*).
其中正確命題的序號(hào)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•煙臺(tái)一模)對(duì)于下列兩個(gè)結(jié)論:
(1)把函數(shù)y=3sin(2x+
π
3
)
的圖象向右平移
π
6
得到y(tǒng)=3sin2x的圖象;
(2)在△ABC中,若acosB=bcosA,則△ABC是等腰三角形.
則下面的判斷正確的是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案