用數(shù)字0,1,2,3,4組成的五位數(shù)中,中間三位數(shù)字各不相同,但首末兩位數(shù)字相同的共有
 
個.
考點:計數(shù)原理的應用
專題:排列組合
分析:由題意知本題是一個分步計數(shù)問題,從1,2,3,4中四個數(shù) 選取一個有四種選法,接著從這五個數(shù)中選取3個在中間三個位置排列,根據(jù)分步計數(shù)原理得到結(jié)果.
解答: 解:由題意知本題是一個分步計數(shù)問題,從1,2,3,4中四個數(shù)中選取一個有四種選法,
接著從這五個數(shù)中選取3個在中間三個位置排列,共有A53=60個,
根據(jù)分步計數(shù)原理知有60×4=240個,
故答案為:240.
點評:本題考查分類計數(shù)問題,數(shù)字問題是排列中的一大類問題,條件變換多樣,把排列問題包含在數(shù)字問題中,解題的關(guān)鍵是看清題目的實質(zhì),很多題目要分類討論,要做到不重不漏.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在△ABC,中,角A、B、C的對邊分別為a、b、c.已知b2-a2+c2-
2
bc=0,bsinB-csinC=a.
(Ⅰ)求A;
(Ⅱ)若a=
2
,求c.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=log2(|2x+1|+|x+2|-m).若關(guān)于x的不等式f(x)≥1的解集是R,則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知0<a≤
π
2
,設(shè)函數(shù)f(x)=
2x-1
2x+1
-cos(x+
π
2
)+1(x∈[-a,a]的最大值為P,最小值為Q,則P+Q的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x||x-1|<1,x∈R},B={x|x2-4x+3<0},則A∩B=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下面是某中學2008年高考各分數(shù)段的考生人數(shù)分布表,則分數(shù)在[700,800)的人數(shù)為
 
人.
分數(shù) 頻數(shù) 頻率
[300,400) 5
[400,500) 90 0.075
[500,600) 499
[600,700) 0.425
[700,800)
[800,900) 8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若f′(x)=-2x,且f(0)=4,則不等式f(x)>0的解集是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sinα=
4
5
,且α是第二象限角,則cosα=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sin(π+α)=
3
sin(
π
2
-α),且α∈(-π,0),則α=( 。
A、
π
3
B、-
3
C、
3
D、-
π
3

查看答案和解析>>

同步練習冊答案