若n∈N*,且n為奇數(shù),則6n+Cn1•6n-1+Cn2•6n-2+…+Cnn-1•6-1被8除所得的余數(shù)是(  )
分析:法一:根據(jù)題意,由二項式定理,可以將6n+Cn1•6n-1+Cn2•6n-2+…+Cnn-1•6-1變形為Cn0•8n-Cn1•8n-1+…+(-1)n-1Cnn-1•8+(-1)nCnn-2,又由n為奇數(shù),則可得6n+Cn1•6n-1+Cn2•6n-2+…+Cnn-1•6-1=Cn0•8n-Cn1•8n-1+…+(-1)n-1Cnn-1•8-3,分析可得答案;
法二,用特殊制法,根據(jù)題意,n∈N*,且n為奇數(shù),令n=1,可得6n+Cn1•6n-1+Cn2•6n-2+…+Cnn-1•6-1=6-1=5,分析可得答案.
解答:解:法一:根據(jù)題意,6n+Cn1•6n-1+Cn2•6n-2+…+Cnn-1•6-1
=6n+Cn1•6n-1+Cn2•6n-2+…+Cnn-1•6+Cnn-2
=(6+1)n-2=7n-2=(8-1)n-2
=Cn0•8n-Cn1•8n-1+…+(-1)n-1Cnn-1•8+(-1)nCnn-2
又由n為奇數(shù),則6n+Cn1•6n-1+Cn2•6n-2+…+Cnn-1•6-1=Cn0•8n-Cn1•8n-1+…+(-1)n-1Cnn-1•8-3,
且Cn0•8n-Cn1•8n-1+…+(-1)n-1Cnn-1•8可以被8整除,
則6n+Cn1•6n-1+Cn2•6n-2+…+Cnn-1•6-1被8除所得的余數(shù)是5;
法二,根據(jù)題意,n∈N*,且n為奇數(shù),
在6n+Cn1•6n-1+Cn2•6n-2+…+Cnn-1•6-1中,令n=1,可得6n+Cn1•6n-1+Cn2•6n-2+…+Cnn-1•6-1=6-1=5,
被8除,所得的余數(shù)為5,
故選C,
點評:本題考查二項式定理的應(yīng)用,關(guān)鍵是根據(jù)二項式定理,靈活將6n+Cn1•6n-1+Cn2•6n-2+…+Cnn-1•6-1變形,對于選擇題,法二是簡便易行的方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出以下幾個命題,正確的是
 

①函數(shù)f(x)=
x-1
2x+1
對稱中心是(-
1
2
,-
1
2
)
;
②已知Sn是等差數(shù)列{an},n∈N*的前n項和,若S7>S5,則S9>S3;
③函數(shù)f(x)=x|x|+px+q(x∈R)為奇函數(shù)的充要條件是q=0;
④已知a,b,m均是正數(shù),且a<b,則
a+m
b+m
a
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)(nN+),且y=f(x)的圖象經(jīng)過點(1,n2),數(shù)列{an}(nN+)為等差數(shù)列.(1)求數(shù)列{ an}的通項公式;

(2)當(dāng)n為奇函數(shù)時,設(shè),是否存在自然數(shù)mM,使不等式m<<M恒成立,若存在,求出M-m的最小值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)已知向量pq,其中p=(x+c-1,1),q=(ax2+1,y)(a,c,x,y∈R且a>0,x≠1-c),把其中x,y所滿足的關(guān)系式記為y=f(x).若函數(shù)f(x)為奇函數(shù),且當(dāng)x>0時,f(x)有最小值.

(1)求函數(shù)f(x)的表達式;

(2)設(shè)數(shù)列{an},{bn}滿足如下關(guān)系:an+1=,bn=(n∈N*),且b1=,求數(shù)列{bn}的通項公式,并求數(shù)列{(3n-1)bn}(n∈N*)前n項的和Sn.

(文)已知等差數(shù)列{an}滿足:an+1>an(n∈N*),a1=1,該數(shù)列的前三項分別加上1,1,3后順次成為等比數(shù)列{bn}的前三項.

(1)分別求數(shù)列{an},{bn}的通項公式an,bn;

(2)設(shè)Tn=(n∈N*),若Tn+<c(c∈Z)恒成立,求c的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江西省撫州市臨川一中高三5月模擬數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

給出以下幾個命題,正確的是   
①函數(shù)對稱中心是
②已知Sn是等差數(shù)列{an},n∈N*的前n項和,若S7>S5,則S9>S3;
③函數(shù)f(x)=x|x|+px+q(x∈R)為奇函數(shù)的充要條件是q=0;
④已知a,b,m均是正數(shù),且a<b,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年湖南省衡陽市兩校高三聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

給出以下幾個命題,正確的是   
①函數(shù)對稱中心是;
②已知Sn是等差數(shù)列{an},n∈N*的前n項和,若S7>S5,則S9>S3;
③函數(shù)f(x)=x|x|+px+q(x∈R)為奇函數(shù)的充要條件是q=0;
④已知a,b,m均是正數(shù),且a<b,則

查看答案和解析>>

同步練習(xí)冊答案