【題目】基于移動互聯(lián)技術(shù)的共享單車被稱為“新四大發(fā)明”之一,短時間內(nèi)就風靡全國,帶給人們新的出行體驗某共享單車運營公司的市場研究人員為了解公司的經(jīng)營狀況,對該公司最近六個月內(nèi)的市場占有率進行了統(tǒng)計,結(jié)果如下表:

月份

月份代碼x

1

2

3

4

5

6

市場占有率

11

13

16

15

20

21

請在給出的坐標紙中作出散點圖,并用相關(guān)系數(shù)說明可用線性回歸模型擬合月度市場占有率y與月份代碼x之間的關(guān)系;

y關(guān)于x的線性回歸方程,并預測該公司2018年2月份的市場占有率;

根據(jù)調(diào)研數(shù)據(jù),公司決定再采購一批單車擴大市場,現(xiàn)有采購成本分別為1000元輛和800元輛的A,B兩款車型報廢年限各不相同考慮到公司的經(jīng)濟效益,該公司決定先對兩款單車各100輛進行科學模擬測試,得到兩款單車使用壽命頻數(shù)表如下:

報廢年限

車型

1年

2年

3年

4年

總計

A

10

30

40

20

100

B

15

40

35

10

100

經(jīng)測算,平均每輛單車每年可以為公司帶來收入500元不考慮除采購成本之外的其他成本,假設每輛單車的使用壽命都是整數(shù)年,且用頻率估計每輛單車使用壽命的概率,以每輛單車產(chǎn)生利潤的期望值為決策依據(jù)如果你是該公司的負責人,你會選擇采購哪款車型?

參考數(shù)據(jù):,,

參考公式:相關(guān)系數(shù)

回歸直線方程為其中:,

【答案】(1)見解析;(2),估計2018年2月的市場占有率為.(3)見解析

【解析】

(1)畫出散點圖,求出相關(guān)系數(shù),判斷線性相關(guān)性即可;(2)求出回歸方程的系數(shù),求出回歸方程,代入函數(shù)值檢驗即可;(3)求出分布列,求出數(shù)學期望比較即可判斷.

散點圖如圖所示

,

,

,

所以兩變量之間具有較強的線性相關(guān)關(guān)系,

故可用線性回歸模型擬合兩變量之間的關(guān)系.

,

,

,

回歸直線方程為,

2018年2月的月份代碼

,

所以估計2018年2月的市場占有率為

用頻率估計概率,A款單車的利潤X的分布列為:

X

0

500

1000

P

B款單車的利潤Y的分布列為:

Y

200

700

1200

P

以每輛單車產(chǎn)生利潤的期望值為決策依據(jù),故應選擇B款車型.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】高血壓高血糖和高血脂統(tǒng)稱三高”.如圖是西南某地區(qū)從2010年至2016年患三高人數(shù)y(單位:千人)的折線圖.

1)由折線圖看出,可用線性回歸模型擬合的關(guān)系,請求出相關(guān)系數(shù)(精確到0.01)并加以說明;

2)建立關(guān)于的回歸方程,預測2018年該地區(qū)患三高的人數(shù).

參考數(shù)據(jù):,,.

參考公式:相關(guān)系數(shù)

回歸方程 中:,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在等比數(shù)列{an}中,a1=2,且a1a2a3-2成等差數(shù)列.

1)求數(shù)列{an}的通項公式;

2)若數(shù)列{bn}滿足:,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】證明:存在無窮多個棱長為正整數(shù)的長方體,其體積恰等于對角線長的平方,且該長方體的每一個表面總可以割并成兩個整邊正方形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】共享單車的投放,方便了市民短途出行,被譽為中國新四大發(fā)明之一.某市為研究單車用戶與年齡的相關(guān)程度,隨機調(diào)查了100位成人市民,統(tǒng)計數(shù)據(jù)如下:

不小于40

小于40

合計

單車用戶

12

y

m

非單車用戶

x

32

70

合計

n

50

100

1)求出列聯(lián)表中字母x、y、mn的值;

2)①從此樣本中,對單車用戶按年齡采取分層抽樣的方法抽出5人進行深入調(diào)研,其中不小于40歲的人應抽多少人?

②從獨立性檢驗角度分析,能否有以上的把握認為該市成人市民是否為單車用戶與年齡是否小于40歲有關(guān).

下面臨界值表供參考:

P

0.15

0.10

0.05

0.25

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

1)求直線的普通方程和曲線的直角坐標方程;

2)若射線)與直線和曲線分別交于,兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)①若直線的圖象相切, 求實數(shù)的值;

②令函數(shù),求函數(shù)在區(qū)間上的最大值.

(2)已知不等式對任意的恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】高考改革后,學生除了語數(shù)外三門必選外,可在A類科目:物理、化學、生物和B類科目:政治、地理、歷史共6個科目中任選3門.

1)若小明同學已經(jīng)確定選了物理,現(xiàn)在他還要從剩余的5科中再選2科,則他在歷史與地理兩科中至少選一科的概率?

2)求小明同學選A類科目數(shù)X的分布列、數(shù)學期望和方差.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖:在五面體中,四邊形是正方形,,,

.

(1)證明:平面平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習冊答案