數(shù)列{bn}滿足b1=1,bn+1=2bn+1,若數(shù)列{an}滿足a1=1,(n≥2且n∈N+)

(Ⅰ)求b2,b3,b4及bn;

(Ⅱ)證明:(n≥2且n∈N+)

(Ⅲ)求證:

答案:
解析:

  解:(Ⅰ),  1分

  由

  ∴  3分

  (Ⅱ)∵

  ∴,

  ∴  6分

  (Ⅲ)由(Ⅱ)知

  

  

  

  

    9分

  而  10分

  當(dāng)時(shí),

    12分

  法1:∴

  

    13分

  ∴  14分

  法2:原不等式只需證:  11分

  ∵時(shí),

  ∴  13分

  ∴  14分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等比數(shù)列{an}的前n項(xiàng)和Sn,首項(xiàng)a1=1,公比q=f(λ)=
λ
1+λ
(λ≠-1,0)

(Ⅰ)證明:Sn=(1+λ)-λan;
(Ⅱ)若數(shù)列{bn}滿足b1=
1
2
,bn=f(bn-1)(n∈N*,n≥2),求數(shù)列{bn}的通項(xiàng)公式;
(Ⅲ)若λ=1,記cn=an(
1
bn
-1)
,數(shù)列{cn}的前項(xiàng)和為Tn,求證:當(dāng)n≥2時(shí),2≤Tn<4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=n2+n,數(shù)列{bn}滿足b1=5,bn+1=2bn-1(n∈N*),cn=
1
anlog2(bn-1)
,設(shè)數(shù)列{cn}的前n項(xiàng)和為Tn,則Tn
1
2
的大小關(guān)系為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an},如果數(shù)列{bn}滿足b1=a1 ,bn=an+an-1 (n≥2,n∈N*),則稱數(shù)列{bn}是數(shù)列{an}的“生成數(shù)列”
(1)若數(shù)列{an}的通項(xiàng)為an=n,寫出數(shù)列{an}的“生成數(shù)列”{bn}的通項(xiàng)公式;
(2)若數(shù)列{cn}的通項(xiàng)為cn=2n+b,(其中b是常數(shù)),試問數(shù)列{cn}的“生成數(shù)列”{ln}是否是等差數(shù)列,請(qǐng)說(shuō)明理由.
(3)已知數(shù)列{dn}的通項(xiàng)為dn=2n+n,設(shè)數(shù)列{dn}的“生成數(shù)列”{pn}的前n項(xiàng)和為Tn,問是否存在自然數(shù)m滿足滿足(Tm-2012)(Tm-6260)≤0,若存在請(qǐng)求出m的值,否則請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•綿陽(yáng)二模)已知數(shù)列{an}的前n項(xiàng)和Sn=n2+4n(n∈N*),數(shù)列{bn}滿足b1=1,bn+1=2bn+1
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)cn=
(an-3)•(bn+1)4
,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•許昌一模)等差數(shù)列{an}的各項(xiàng)均為正數(shù),a1=1且a3,a6,a10+2成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的前20項(xiàng)和S20;
(Ⅱ)設(shè)數(shù)列{bn}滿足b1=1,bn+1=bn+2an,求證bn•bn+2<b
 
2
n+1

查看答案和解析>>

同步練習(xí)冊(cè)答案