如果函數(shù)f(x)=
a•3x+4-a
4(3x-1)
是奇函數(shù),則a=
 
考點:函數(shù)奇偶性的判斷
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由奇函數(shù)的定義可得,f(-x)+f(x)=0,再化簡整理,即可得到a.
解答: 解:函數(shù)f(x)=
a•3x+4-a
4(3x-1)
是奇函數(shù),
則f(-x)+f(x)=0,
即有
a•3-x+4-a
4(3-x-1)
+
a•3x+4-a
4(3x-1)
=0,
a
2
+
1
3-x-1
+
1
3x-1
=0,
化簡得到,
a
2
+
3x
1-3x
+
1
3x-1
=0,
a
2
=1,
故a=2.
故答案為:2
點評:本題考查函數(shù)的奇偶性及運用,考查定義法求參數(shù)的方法,考查運算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

圓C1:(x-m)2+(y+2)2=9與圓C2:(x+1)2+(y-m)2=4內(nèi)切,則m的值( 。
A、-2B、-1
C、-2或-1D、2或1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:直線y=x+2與雙曲線x2-y2=1有且僅有一個交點;命題q:若直線l垂直于直線m,且m∥平面α,則l⊥α.下列命題中為真命題的是( 。
A、(¬p)∨(¬q)
B、(¬p)∨q
C、(¬p)∧(¬q)
D、p∧q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若等差數(shù)列{an}的前5項之和S5=25,且a2=3,則a6=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,滿足對任意x1,x2∈(0,1)(x1≠x2),都有
f(x2)-f(x1)
x2-x1
>0的函數(shù)是(  )
A、y=
x-1
B、y=(x-1)2
C、y=2-x
D、y=log2(x+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:|1-
x-1
3
|≤2,q:x2-2x+1-m2≤0(m>0).
(1)求¬p;
(2)若¬p是¬q的必要不充分條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)=ax7+bx-2,若f(2014)=10,則f(-2014)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在區(qū)間[-2,2]上隨機取一個數(shù)x,則x∈[0,1]的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若集合A={-1,1},B={x|x+m=0},且A∪B=A,則m的值為( 。
A、1B、-1
C、1或-1D、1或-1或0

查看答案和解析>>

同步練習(xí)冊答案