精英家教網 > 高中數學 > 題目詳情

【題目】已知6只小白鼠有1只被病毒感染,需要通過對其化驗病毒DNA來確定是否感染.下面是兩種化驗方案:方案甲:逐個化驗,直到能確定感染為止.方案乙:將6只分為兩組,每組三個,并將它們混合在一起化驗,若存在病毒DNA,則表明感染在這三只當中,然后逐個化驗,直到確定感染為止;若結果不含病毒DNA,則在另外一組中逐個進行化驗.
(1)求依據方案乙所需化驗恰好為2次的概率.
(2)首次化驗化驗費為10元,第二次化驗化驗費為8元,第三次及其以后每次化驗費都是6元,列出方案甲所需化驗費用的分布列,并估計用方案甲平均需要化驗費多少元?

【答案】
(1)解:方案乙中所需化驗次數恰好為2次的事件有兩種情況:

第一種,先化驗一組,結果不含病毒DNA,再從另一組任取一個樣品進行化驗,

則恰含有病毒的概率為 × =

第二種,先化驗一組,結果含有病毒DNA,再從中逐個化驗,

恰第一個樣品含有病毒的概率為 × =

∴依據方案乙所需化驗恰好為2次的概率為 =


(2)解:設方案甲化驗的次數為ξ,則ξ可能的取值為1,2,3,4,5,對應的化驗費為η元,

P(ξ=1)=P(η=10)=

P(ξ=2)=P(η=18)= × = ,

P(ξ=3)=P(η=24)= × =

P(ξ=4)=P(η=30)= = ,

P(ξ=5)=P(η=36)= = ,

∴方案甲所需化驗費用η的分布列為:

η

10

18

24

30

36

P

用方案甲平均需要化驗費E(η)= + +24× +30× +36× = (元)


【解析】(1)方案乙中所需化驗次數恰好為2次的事件有兩種情況:第一種,先化驗一組,結果不含病毒DNA,再從另一組任取一個樣品進行化驗,可得恰含有病毒的概率為 × .第二種,先化驗一組,結果含有病毒DNA,再從中逐個化驗,恰第一個樣品含有病毒的概率為 × .利用互斥事件的概率計算公式即可得出.(2)設方案甲化驗的次數為ξ,則ξ可能的取值為1,2,3,4,5,對應的化驗費為η元,利用相互獨立事件的概率計算公式可得:P(ξ=1)=P(η=10),P(ξ=2)=P(η=18),P(ξ=3)=P(η=24),P(ξ=4)=P(η=30),P(ξ=5)=P(η=36).

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖1,在高為2的梯形中, , , ,過、分別作, ,垂足分別為。已知,將梯形沿、同側折起,得空間幾何體,如圖2。

(1)若,證明: ;

(2)若,證明:

(3)在(1),(2)的條件下,求三棱錐的體積。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數多少之間的關系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數,得到如下資料:

日期

1月10日

2月10日

3月10日

4月10日

5月10日

6月10日

晝夜溫差

x (℃)

10

11

13

12

8

6

就診人數

y()

22

25

29

26

16

12

該興趣小組確定的研究方案是:先用2、3、4、5月的4組數據求線性回歸方程,再用1月和6月的2組數據進行檢驗.

(1)請根據2、3、4、5月的數據,求出y關于x的線性回歸方程

(2)若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?

(參考公式: ,

參考數據:11×25+13×29+12×26+8×16=1092,112+132+122+82=498.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】先后拋擲兩枚大小相同的骰子.

1)求點數之和出現7點的概率;
2)求出現兩個6點的概率;

(3)求點數之和能被3整除的概率。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某保險公司利用簡單隨機抽樣方法,對投保車輛進行抽樣,樣本車輛中每輛車的賠付結果統(tǒng)計如下:

賠付金額()

0

1 000

2 000

3 000

4 000

車輛數()

500

130

100

150

120

(1)若每輛車的投保金額均為2800,估計賠付金額大于投保金額的概率.

(2)在樣本車輛中,車主是新司機的占10%,在賠付金額為4000元的樣本車輛中,車主是新司機的占20%,估計在已投保車輛中,新司機獲賠金額為4000元的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=xlnx﹣ x2(a∈R).
(1)若x>0,恒有f(x)≤x成立,求實數a的取值范圍;
(2)若a=0,求f(x)在區(qū)間[t,t+2](t>0)上的最小值;
(3)若函數g(x)=f(x)﹣x有兩個極值點x1 , x2 , 求證: + >2ae.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)的圖象與函數y=x3﹣3x2+2的圖象關于點( ,0)對稱,過點(1,t)僅能作曲線y=f(x)的一條切線,則實數t的取值范圍是(
A.(﹣3,﹣2)
B.[﹣3,﹣2]
C.(﹣∞,﹣3)∪(﹣2,+∞)
D.(﹣∞,﹣3)∪[﹣2,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線過坐標原點的方程為

(1)當直線的斜率為,與圓相交所得的弦長

(2)設直線與圓交于兩點,的中點求直線的方程

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】以下三個關于圓錐曲線的命題中:

設A、B為兩個定點,K為非零常數,若|PA|-|PB|=K,則動點P的軌跡是雙曲線.

方程的兩根可分別作為橢圓和雙曲線的離心率.

雙曲線與橢圓有相同的焦點.

④已知拋物線,以過焦點的一條弦AB為直徑作圓,則此圓與準線相切.

其中真命題為_________(寫出所有真命題的序號).

查看答案和解析>>

同步練習冊答案