【題目】已知函數(shù)f(x)=cos(ωx+φ)(ω>0),x=﹣ 是y=f(x)的零點(diǎn),直線x= 為y=f(x)圖象的一條對(duì)稱軸,且函數(shù)f(x)在區(qū)間( , )上單調(diào),則ω的最大值是( )
A.9
B.7
C.5
D.3
【答案】D
【解析】解:∵x=﹣ 是y=f(x)的零點(diǎn),直線x= 為y=f(x)圖象的一條對(duì)稱軸, ∴ = ,(n∈N)
即ω= =2n+1,(n∈N)
即ω為正奇數(shù),
∵函數(shù)f(x)在區(qū)間( , )上單調(diào),
∴ ﹣ = ≤
即T= ,解得:ω≤8,
當(dāng)ω=7時(shí),﹣ +φ=kπ+ ,k∈Z,
取φ= ,
此時(shí)f(x)在( , )不單調(diào),不滿足題意;
當(dāng)ω=5時(shí),﹣ +φ=kπ+ ,k∈Z,
取φ= ,
此時(shí)f(x)在( , )不單調(diào),滿足題意;
當(dāng)ω=3時(shí),﹣ +φ=kπ+ ,k∈Z,
取φ=﹣ ,
此時(shí)f(x)在( , )單調(diào),滿足題意;故ω的最大值為3,
故選:D.
【考點(diǎn)精析】本題主要考查了余弦函數(shù)的對(duì)稱性的相關(guān)知識(shí)點(diǎn),需要掌握余弦函數(shù)的對(duì)稱性:對(duì)稱中心;對(duì)稱軸才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時(shí),求函數(shù)在點(diǎn)處的切線方程;
(2)討論函數(shù)的單調(diào)性;
(3)當(dāng)時(shí),求證:對(duì)任意,都有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我市為增強(qiáng)市民的環(huán)境保護(hù)意識(shí),面向全市征召義務(wù)宣傳志愿者.現(xiàn)從符合條件的志愿者中隨機(jī)抽取100名按年齡分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.
(1)分別求第3,4,5組的頻率.
(2)若從第3,4,5組中用分層抽樣的方法抽取6名志愿者參加廣場宣傳活動(dòng),應(yīng)從第3,4,5組各抽取多少名志愿者?
(3)在(2)的條件下,我市決定在這6名志愿者中隨機(jī)抽取2名志愿者介紹宣傳經(jīng)驗(yàn),求第4組至少有一名志愿者被抽中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)中,在區(qū)間(0,+∞)上是增函數(shù)的是( )
A.f(x)=
B.f(x)=log2x
C.f(x)=( )x
D.f(x)=﹣x2+2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)的離心率為 ,A(a,0),B(0,b),O(0,0),△OAB的面積為4,
(1)求橢圓的標(biāo)準(zhǔn)方程
(2)設(shè)直線l:y=kx+1與橢圓C相交于P,Q兩點(diǎn),是否存在這樣的實(shí)數(shù)k,使得以PQ為直徑的圓過原點(diǎn),若存在,請(qǐng)求出k的值:若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓 =1(a>b>0)的離心率為 .A為橢圓上異于頂點(diǎn)的一點(diǎn),點(diǎn)P滿足 = ,
(1)若點(diǎn)P的坐標(biāo)為(2, ),求橢圓的方程;
(2)設(shè)過點(diǎn)P的一條直線交橢圓于B,C兩點(diǎn),且 =m ,直線OA,OB的斜率之積﹣ ,求實(shí)數(shù)m的值;
(3)在(1)的條件下,是否存在定圓M,使得過圓M上任意一點(diǎn)T都能作出該橢圓的兩條切線,且這兩條切線互相垂直?若存在,求出定圓M;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ax﹣a﹣x(a>0且a≠1)
(1)若f(1)<0,求a的取值范圍;
(2)若f(1)= ,g(x)=a2x+a﹣2x﹣2mf(x)且g(x)在[1,+∞)上的最小值為﹣2,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-5:不等式選講
設(shè)函數(shù)f(x)=x2-x+15,且|x-a|<1,
(1)若,求的取值范圍;
(2)求證:|f(x)-f(a)|<2(|a|+1).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l與拋物線y2=2px(p>0)交于A,B兩點(diǎn),D為坐標(biāo)原點(diǎn),且OA⊥OB,OD⊥AB于點(diǎn)D,點(diǎn)D的坐標(biāo)為(1,2),則p= .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com