雙曲線的焦距為( )
A.3
B.4
C.3
D.4
【答案】分析:本題比較簡明,需要注意的是容易將雙曲線中三個量a,b,c的關系與橢圓混淆,而錯選B
解答:解析:由雙曲線方程得a2=10,b2=2,
∴c2=12,
于是
故選D.
點評:本題高考考點是雙曲線的標準方程及幾何性質(zhì),在新課標中雙曲線的要求已經(jīng)降低,考查也是一些基礎知識,不要盲目拔高.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知橢圓C的方程為
x2
a2
+
y2
b2
=1(a>b>0),雙曲線
x2
a2
-
y2
b2
=1的兩條漸近線為l1、l2,過橢圓C的右焦點F作直線l,使l⊥l1,又l與l2交于P點,設l與橢圓C的兩個交點由上至下依次為A、B.(如圖)
(1)當l1與l2夾角為60°,雙曲線的焦距為4時,求橢圓C的方程;
(2)當
FA
AP
時,求λ的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左頂點與拋物線y2=2px的焦點的距離為4,且雙曲線的一條漸近線與拋物線的準線的交點坐標為(-2,-1),則雙曲線的焦距為(  )
A、2
3
B、2
5
C、4
3
D、4
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

雙曲線的兩條漸進線方程分別為x-
3
y=0和x+
3
y=0,雙曲線上的點滿足不等式x2-3y2<0,已知雙曲線的焦距為4,則雙曲線的準線方程為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•臨沂二模)已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左頂點與拋物線y2=2px(p>0)的焦點的距離為4,且雙曲線的一條漸近線與拋物線的準線的交點坐標為(-2,-1),則雙曲線的焦距為
2
5
2
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的左頂點是圓x2+y2+2x-2=0的圓心,一條漸近線的方程為y=2x,則雙曲線的焦距為( 。

查看答案和解析>>

同步練習冊答案