【題目】第七屆世界軍人運(yùn)動(dòng)會(huì)于20191018日至27日在中國(guó)武漢舉行,中國(guó)隊(duì)以1336442銅位居金牌榜和獎(jiǎng)牌榜的首位.運(yùn)動(dòng)會(huì)期間有甲、乙等五名志愿者被分配到射擊、田徑、籃球、游泳四個(gè)運(yùn)動(dòng)場(chǎng)地提供服務(wù),要求每個(gè)人都要被派出去提供服務(wù),且每個(gè)場(chǎng)地都要有志愿者服務(wù),則甲和乙恰好在同一組的概率是(

A.B.C.D.

【答案】A

【解析】

根據(jù)題意,五人分成四組,先求出兩人組成一組的所有可能的分組種數(shù),再將甲乙組成一組的情況,即可求出概率.

五人分成四組,先選出兩人組成一組,剩下的人各自成一組,

所有可能的分組共有種,

甲和乙分在同一組,則其余三人各自成一組,只有一種分法,與場(chǎng)地?zé)o關(guān),

故甲和乙恰好在同一組的概率是.

故選:A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為大力提倡厲行節(jié)約,反對(duì)浪費(fèi),衡陽(yáng)市通過(guò)隨機(jī)詢(xún)問(wèn)100名性別不同的居民是否做到光盤(pán)行動(dòng),得到如右列聯(lián)表及附表:經(jīng)計(jì)算:參照附表,得到的正確結(jié)論是(


做不到光盤(pán)行動(dòng)

做到光盤(pán)行動(dòng)


45

10


30

15

k

A.在犯錯(cuò)誤的概率不超過(guò)1%的前提下,認(rèn)為該市民能否做到光盤(pán)行動(dòng)與性別有關(guān)

B.在犯錯(cuò)誤的概率不超過(guò)1%的前提下,認(rèn)為該市民能否做到光盤(pán)行動(dòng)與性別無(wú)關(guān)

C.90%以上的把握認(rèn)為該市民能否做到光盤(pán)行動(dòng)與性別有關(guān)

D.90%以上的把握認(rèn)為該市民能否做到光盤(pán)行動(dòng)與性別無(wú)關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中,已知四邊形為矩形,,的角平分線(xiàn).

1)求證:平面平面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐中,平面平面ABCD,,EPA的中點(diǎn).

(Ⅰ)求證:平面PBC;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若函數(shù),試討論的單調(diào)性;

2)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面,,的中點(diǎn),上的點(diǎn).

1)若平面,證明:平面.

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校高三(1)班在一次語(yǔ)文測(cè)試結(jié)束后,發(fā)現(xiàn)同學(xué)們?cè)诒痴b內(nèi)容方面失分較為嚴(yán)重.為了提升背誦效果,班主任倡議大家在早、晚讀時(shí)間站起來(lái)大聲誦讀,為了解同學(xué)們對(duì)站起來(lái)大聲誦讀的態(tài)度,對(duì)全班50名同學(xué)進(jìn)行調(diào)查,將調(diào)查結(jié)果進(jìn)行整理后制成下表:

考試分?jǐn)?shù)

頻數(shù)

5

10

15

5

10

5

贊成人數(shù)

4

6

9

3

6

4

1)欲使測(cè)試優(yōu)秀率為30%,則優(yōu)秀分?jǐn)?shù)線(xiàn)應(yīng)定為多少分?

2)依據(jù)第1問(wèn)的結(jié)果及樣本數(shù)據(jù)研究是否贊成站起來(lái)大聲誦讀的態(tài)度與考試成績(jī)是否優(yōu)秀的關(guān)系,列出2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為贊成與否的態(tài)度與成績(jī)是否優(yōu)秀有關(guān)系.

參考公式及數(shù)據(jù):,.

0.100

0.050

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠為生產(chǎn)一種標(biāo)準(zhǔn)長(zhǎng)度為的精密器件,研發(fā)了一臺(tái)生產(chǎn)該精密器件的車(chē)床,該精密器件的實(shí)際長(zhǎng)度為,“長(zhǎng)度誤差”為,只要“長(zhǎng)度誤差”不超過(guò)就認(rèn)為合格.已知這臺(tái)車(chē)床分晝、夜兩個(gè)獨(dú)立批次生產(chǎn),每天每批次各生產(chǎn)件.已知每件產(chǎn)品的成本為元,每件合格品的利潤(rùn)為元.在晝、夜兩個(gè)批次生產(chǎn)的產(chǎn)品中分別隨機(jī)抽取件,檢測(cè)其長(zhǎng)度并繪制了如下莖葉圖:

1)分別估計(jì)在晝、夜兩個(gè)批次的產(chǎn)品中隨機(jī)抽取一件產(chǎn)品為合格品的概率;

2)以上述樣本的頻率作為概率,求這臺(tái)車(chē)床一天的總利潤(rùn)的平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,,焦距為2,且經(jīng)過(guò)點(diǎn),斜率為的直線(xiàn)經(jīng)過(guò)點(diǎn),與橢圓交于,兩點(diǎn).

1)求橢圓的方程;

2)在軸上是否存在點(diǎn),使得以,為鄰邊的平行四邊形是菱形?如果存在,求出的取值范圍,如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案