4.已知復(fù)數(shù)$\overline z$是復(fù)數(shù)z的共軛復(fù)數(shù),$\overline z$=1+i,則$\frac{2i}{z}$=( 。
A.-1-iB.-1+iC.1+iD.1-i

分析 利用復(fù)數(shù)的運算法則、共軛復(fù)數(shù)的定義即可得出.

解答 解:$\overline z$=1+i,∴z=1-i,
則$\frac{2i}{z}$=$\frac{2i}{1-i}$=$\frac{2i(1+i)}{(1-i)(1+i)}$=i(1+i)=-1+i.
故選:B.

點評 本題考查了復(fù)數(shù)的運算法則、共軛復(fù)數(shù)的定義,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知直線l1:x+my+6=0,l2:(m-2)x+3y+2m=0,若l1∥l2,則實數(shù)m的值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)$f(x)=x+\frac{a}{x}$,且f(1)=2.
(1)求a的值;
(2)判斷函數(shù)f(x)的奇偶性;
(3)探求f(x)在區(qū)間[1,+∞)的單調(diào)性,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.總體編號為01,02,…19,20的20個個體組成.利用下面的隨機(jī)數(shù)表選取5個個體,選取方法是從隨機(jī)數(shù)表第1行的第5列和第6列數(shù)字開始由左到右依次選取兩個數(shù)字,則選出來的第5個個體的編號為01.
  7816   6572   0802   6314   0214   4319   9714   0198
  3204   9234   4936   8200   3623   4869   6938   7181

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知數(shù)列{an}滿足a1+a2+a3+…+an=n-an.其中n∈N*
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{(2-n)(an-1)}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知$\overrightarrow{a}$,$\overrightarrow$為單位向量,且$\overrightarrow{a}$•($\overrightarrow{a}$-$\overrightarrow$)=$\frac{1}{2}$,則向量$\overrightarrow{a}$與$\overrightarrow$的夾角為(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)集合A={x|x∈Z,-10≤x≤-1},B={x|x∈Z,x2≤25},則A∪B中的元素個數(shù)是(  )
A.15B.16C.10D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)x,y∈R,向量$\overrightarrow a$=(x,1),$\overrightarrow b$=(2,-2),且$\overrightarrow{a}$•$\overrightarrow$=2,則x=(  )
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.5-2$\sqrt{3}$與5+2$\sqrt{3}$的等比中項為$±\sqrt{13}$.

查看答案和解析>>

同步練習(xí)冊答案