【題目】(題文)已知平面內(nèi)一動點P到點F(1,0)的距離與點Py軸的距離的差等于1.

(1)求動點P的軌跡C的方程;

(2)過點F作兩條斜率存在且互相垂直的直線l1,l2,設(shè)l1與軌跡C相交于點A,Bl2與軌跡C相交于點D,E,求·的最小值.

【答案】(1)動點P的軌跡C的方程為y2=4x(x≥0)和y=0(x<0).(2)16.

【解析】

(1)設(shè)動點P的坐標為(x,y),由題意得-|x|=1.化簡得y2=2x+2|x|,

x≥0,y2=4x;x<0,y=0.

所以動點P的軌跡C的方程為

y2=4x(x≥0)y=0(x<0).

(2)由題意知,直線l1的斜率存在且不為0,設(shè)為k,l1的方程為y=k(x-1).

k2x2-(2k2+4)x+k2=0.

設(shè)A(x1,y1),B(x2,y2),x1,x2是上述方程的兩個實根,于是x1+x2=2+,x1x2=1.

因為l1⊥l2,所以l2的斜率為-.

設(shè)D(x3,y3),E(x4, y4),

則同理可得x3+x4=2+4k2,x3x4=1.

·=(+)·(+)

=·+·+·+·

=·+·=||·||+||·||

=(x1+1)(x2+1)+(x3+1)(x4+1)

=x1x2+(x1+x2)+1+x3x4+(x3+x4)+1

=1+(2+)+1+1+(2+4k2)+1

=8+4(k2+)≥8+4×2=16.

故當且僅當k2=,k=±1,·取最小值16.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分16分)對于函數(shù),如果存在實數(shù)使得,那么稱的生成函數(shù).

1)下面給出兩組函數(shù),是否分別為的生成函數(shù)?并說明理由;

第一組:;

第二組:;

2)設(shè),生成函數(shù).若不等式上有解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)y=ax+b的部分圖象如圖所示,則( 。

A.0<a<1,﹣1<b<0
B.0<a<1,0<b<1
C.a>1,﹣1<b<0
D.a>1,0<b<1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過拋物線y2=8x的焦點,作傾斜角為45°的直線,則被拋物線截得的弦長為(  )

A. 8 B. 16 C. 32 D. 64

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直線與拋物線相切于點.

(1)求實數(shù)的值;

(2)求以點為圓心,且與拋物線的準線相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了調(diào)查某校高二同學是否需要學校提供學法指導(dǎo),用簡單隨機抽樣方法從該校高二年級調(diào)查了55位同學,結(jié)果如下:

需要

20

10

不需要

10

15

Ⅰ)估計該校高二年級同學中,需要學校提供學法指導(dǎo)的同學的比例(用百分數(shù)表示,保留兩位有效數(shù)字);

Ⅱ)能否有95%的把握認為該校高二年級同學是否需要學校提供學法指導(dǎo)與性別有關(guān)?

Ⅲ)根據(jù)(Ⅱ)的結(jié)論,能否提出更好的調(diào)查方法來估計該校高二年級同學中,需要學校提供學法指導(dǎo)?說明理由.

附:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了讓觀賞游玩更便捷舒適,常州恐龍園推出了代步工具租用服務(wù).已知有腳踏自行車與電動自行車兩種車型,采用分段計費的方式租用.型車每分鐘收費元(不足分鐘的部分按分鐘計算),型車每分鐘收費元(不足分鐘的部分按分鐘計算),現(xiàn)有甲乙丙丁四人,分別相互獨立地到租車點租車騎行(各租一車一次),設(shè)甲乙丙丁不超過分鐘還車的概率分別為,并且四個人每人租車都不會超過分鐘,甲乙丙均租用型車,丁租用型車.

(1)求甲乙丙丁四人所付的費用之和為25元的概率;

(2)求甲乙丙三人所付的費用之和等于丁所付的費用的概率;

(3)設(shè)甲乙丙丁四人所付費用之和為隨機變量,求的概率分布和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若一條直線a與平面α內(nèi)的一條直線b所成的角為30°,則下列說法正確的是(  )

A. 直線a與平面α所成的角為30° B. 直線a與平面α所成的角大于30°

C. 直線a與平面α所成的角小于30° D. 直線a與平面α所成的角不超過30°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= +x.
(1)若函數(shù)f(x)的圖象在(1,f(1))處的切線經(jīng)過點(0,﹣1),求a的值;
(2)是否存在負整數(shù)a,使函數(shù)f(x)的極大值為正值?若存在,求出所有負整數(shù)a的值;若不存在,請說明理由;
(3)設(shè)a>0,求證:函數(shù)f(x)既有極大值,又有極小值.

查看答案和解析>>

同步練習冊答案