在銳角△ABC中,AC=4,BC=3,三角形的面積等于3
3
,則AB的長為
 
分析:利用三角形面積公式列出關系式,將AC與BC,以及已知面積代入求出sinC的值,利用同角三角函數(shù)間的基本關系求出cosC的值,利用余弦定理列出關系式,將AC,BC,以及cosC的值代入即可求出AB的長.
解答:解:∵在銳角△ABC中,AC=b=4,BC=a=3,三角形的面積等于3
3
,
1
2
absinC=3
3
,即sinC=
3
2
,
∵C為銳角,∴cosC=
1-sin2C
=
1
2
,
由余弦定理得:c2=a2+b2-2abcosC=16+9-12=13,
解得:AB=c=
13

故答案為:
13
點評:此題考查了余弦定理,以及三角形的面積公式,熟練掌握余弦定理是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知向量
m
=(sinx,-1)
,
n
=(cosx,3)

(1)設函數(shù)f(x)=(
m
+
n
)•
m
,求函數(shù)f(x)的單調遞增區(qū)間;
(2)已知在銳角△ABC中,a,b,c分別為角A,B,C的對邊,
3
c=2asin(A+B)
,對于(1)中的函數(shù)f(x),求f(B+
π
8
)
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在銳角△ABC中,A、B、C三內角所對的邊分別為a、b、c,cos2A+
1
2
=sin2A,a=
7

(1)若b=3,求c;
(2)求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•奉賢區(qū)二模)在銳角△ABC中,a、b、c分別是三內角A、B、C所對的邊,若a=3,b=4,且△ABC的面積為3
3
,則角C=
π
3
π
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•武漢模擬)在銳角△ABC中,A>B,則有下列不等式:①sinA>sinB;②cosA<cosB;③sin2A>sin2B;④cos2A<cos2B( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2005•武漢模擬)在銳角△ABC中,a、b、c分別為角A、B、C所對的邊,又c=
21
,b=4,且BC邊上高h=2
3

①求角C;
②a邊之長.

查看答案和解析>>

同步練習冊答案