【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知sinA+ cosA=0,a=2 ,b=2.
(Ⅰ)求c;
(Ⅱ)設D為BC邊上一點,且AD⊥AC,求△ABD的面積.
【答案】解:(Ⅰ)∵sinA+ cosA=0,
∴tanA= ,
∵0<A<π,
∴A= ,
由余弦定理可得a2=b2+c2﹣2bccosA,
即28=4+c2﹣2×2c×(﹣ ),
即c2+2c﹣24=0,
解得c=﹣6(舍去)或c=4,
(Ⅱ)∵c2=b2+a2﹣2abcosC,
∴16=28+4﹣2×2 ×2×cosC,
∴cosC= ,
∴sinC= ,
∴tanC=
在Rt△ACD中,tanC= ,
∴AD= ,
∴S△ACD= ACAD= ×2× = ,
∵S△ABC= ABACsin∠BAD= ×4×2× =2 ,
∴S△ABD=S△ABC﹣S△ADC=2 ﹣ =
【解析】(Ⅰ)先根據(jù)同角的三角函數(shù)的關系求出A,再根據(jù)余弦定理即可求出,
(Ⅱ)先根據(jù)夾角求出cosC,求出AD的長,再求出△ABC和△ADC的面積,即可求出△ABD的面積.
【考點精析】解答此題的關鍵在于理解同角三角函數(shù)基本關系的運用的相關知識,掌握同角三角函數(shù)的基本關系:;;(3) 倒數(shù)關系:.
科目:高中數(shù)學 來源: 題型:
【題目】某公司為確定下一年度投人某種產(chǎn)品的宣傳費,需了解年宣傳費對年銷售額(單位:萬元)的影響,對近6年的年宣傳費和年銷售額數(shù)據(jù)進行了研究,發(fā)現(xiàn)宣傳費和年銷售額具有線性相關關系,并對數(shù)據(jù)作了初步處理,得到下面的一些統(tǒng)計量的值.
(I)根據(jù)表中數(shù)據(jù)建立關于的回歸方程;
(Ⅱ)利用(I)中的回歸方程預測該公司如果對該產(chǎn)品的宜傳費支出為10萬元時銷售額是萬元,該公司計劃從10名中層管理人員中挑選3人擔任總裁助理,10名中層管理人員中有2名是技術部骨干,記所挑選3人中技術部骨干人數(shù)為且隨機變量,求的概率分布列與數(shù)學期望.
附:回歸直線的傾斜率截距的最小二乘估計公式分別為:
,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】高考改革是教育體制改革中的重點領域和關鍵環(huán)節(jié),全社會極其關注.近年來,在新高考改革中,打破文理分科的“”模式初露端倪.其中“”指必考科目語文、數(shù)學、外語,“”指考生根據(jù)本人興趣特長和擬報考學校及專業(yè)的要求,從物理、化學、生物、歷史、政治、地理六科中選擇門作為選考科目,其中語、數(shù)、外三門課各占分,選考科目成績采用“賦分制”,即原始分數(shù)不直接用,而是按照學生分數(shù)在本科目考試的排名來劃分等級并以此打分得到最后得分.假定省規(guī)定:選考科目按考生成績從高到低排列,按照占總體的,以此賦分分、分、分、分.為了讓學生們體驗“賦分制”計算成績的方法,省某高中高一()班(共人)舉行了以此摸底考試(選考科目全考,單科全班排名,每名學生選三科計算成績),已知這次摸底考試中的物理成績(滿分分)頻率分布直方圖,化學成績(滿分分)莖葉圖如下圖所示,小明同學在這次考試中物理分,化學多分.
(1)求小明物理成績的最后得分;
(2)若小明的化學成績最后得分為分,求小明的原始成績的可能值;
(3)若小明必選物理,其他兩科在剩下的五科中任選,求小明此次考試選考科目包括化學的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量 =(cosx,sinx), =(3,﹣ ),x∈[0,π].
(Ⅰ)若 ∥ ,求x的值;
(Ⅱ)記f(x)= ,求f(x)的最大值和最小值以及對應的x的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】盒中裝有個零件,其中個是使用過的,另外個未經(jīng)使用.
(1)從盒中每次隨機抽取個零件,每次觀察后都將零件放回盒中,求次抽取中恰有次抽到使用過的零件的概率;
(2)從盒中隨機抽取個零件,使用后放回盒中,記此時盒中使用過的零件個數(shù)為,求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=excosx﹣x.(13分)
(1)求曲線y=f(x)在點(0,f(0))處的切線方程;
(2)求函數(shù)f(x)在區(qū)間[0, ]上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知在直角坐標系中,直線的參數(shù)方程為,(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求直線的普通方程和曲線的直角坐標方程;
(2)設點是曲線上的一個動點,求它到直線的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】雙曲線E: =1(a>0,b>0)的左、右焦點分別為F1、F2 , P是E坐支上一點,且|PF1|=|F1F2|,直線PF2與圓x2+y2=a2相切,則E的離心率為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com