拋物線的焦點坐標(biāo)為   
【答案】分析:先把拋物線方程整理成標(biāo)準(zhǔn)方程求得p,進而根據(jù)拋物線的性質(zhì)求得焦點坐標(biāo).
解答:解:整理拋物線方程得y2=4ax,則p=2a
∴拋物線焦點坐標(biāo)為(a,0)
故答案為(a,0)
點評:本題主要考查了拋物線的簡單性質(zhì).屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

2、已知拋物線的方程為y2=4x,則此拋物線的焦點坐標(biāo)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•重慶一模)若拋物線的焦點坐標(biāo)為(2,0),則拋物線的標(biāo)準(zhǔn)方程是
y2=8x
y2=8x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•重慶二模)若拋物線的頂點坐標(biāo)是M(1,0),準(zhǔn)線l的方程是x-2y-2=0,則拋物線的焦點坐標(biāo)為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線的方程為x=2y2,則拋物線的焦點坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若拋物線y2=ax的焦點到準(zhǔn)線的距離為4,則此拋物線的焦點坐標(biāo)為( 。
A、(-2,0)或(2,0)B、(2,0)C、(-2,0)D、(4,0)或(-4,0)

查看答案和解析>>

同步練習(xí)冊答案