精英家教網 > 高中數學 > 題目詳情

已知函數數學公式,函數g(x)=-x2+3x,則方程f(x)=g(x)在實數范圍內解的個數為________個.

4
分析:函數是奇函數且是單調增函數,函數g(x)=-x2+3x的圖象是開口向下的拋物線,由此只要在同一坐標系中作出兩個函數的圖象,觀察它們的交點的個數,就可得出方程f(x)=g(x)在實數范圍內解的個數.
解答:在同一坐標系中作出
和g(x)=-x2+3x的圖象,
發(fā)現x=0是它們的一個公共點.
再看兩個函數的圖象
在x<0的情況下有一個公共點;在在x>0的情況下有兩個個公共點
可得兩個函數圖象的公共點的個數為4個
故答案為4
點評:本題考查了方程的根的個數的問題,屬于中檔題.采用數形結合的方法,觀察兩函數圖象的公共點的個數,找到方程個數,是這類問題常用的方法.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=x2+ax-lnx,a∈R.
(Ⅰ)若a=0時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)若函數f(x)在[1,2]上是減函數,求實數a的取值范圍;
(Ⅲ)令g(x)=f(x)-x2,是否存在實數a,當x∈(0,e](e是自然常數)時,函數g(x)的最小值是3,若存在,求出a的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=x2+2(1-a)x+2(1-a)ln(x-1)x∈(1,+∞).
(1)x=
3
2
是函數的一個極值點,求a的值;
(2)求函數f(x)的單調區(qū)間;
(3)當a=2時,函數g(x)=-x2-b,(b>0),若對任意m1,m2∈[
1
e
+1,e+1],
.
g(m2)-f(m1) 
  
.
<2g2+2g
都成立,求b的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)的圖象在[a,b]上連續(xù)不斷曲線,定義:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(t)|t∈D}表示函數f(t)在D上的最小值,max{f(t)|x∈D}表示函數f(t)在D上的最大值.若存在最小正整數k,使得f2(x)-f1(x)≤k(x-a)對任意的x∈[a,b]成立,則稱函數f(x)為[a,b]上的“k階收縮函數”.
(1)已知函數f(x)=2sinx(0≤x≤
n
2
),試寫出f1(x),f2(x)的表達式,并判斷f(x)是否為[0,
n
2
]上的“k階收縮函數”,如果是,請求對應的k的值;如果不是,請說明理由;
(2)已知b>0,函數g(x)=-x3+3x2是[0,b]上的2階收縮函數,求b的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數f(x)=x2+2(1-a)x+2(1-a)ln(x-1)x∈(1,+∞).
(1)x=
3
2
是函數的一個極值點,求a的值;
(2)求函數f(x)的單調區(qū)間;
(3)當a=2時,函數g(x)=-x2-b,(b>0),若對任意m1,m2∈[
1
e
+1,e+1],
.
g(m2)-f(m1) 
  
.
<2g2+2g
都成立,求b的取值范圍.

查看答案和解析>>

科目:高中數學 來源:2009-2010學年浙江省杭州十四中高三(上)11月月考數學試卷(理科)(解析版) 題型:解答題

已知函數(a為常數),若函數f(x)的最大值為
(1)求實數a的值;
(2)將函數y=f(x)的圖象向左平移個單位,再向下平移2個單位得到函數y=g(x)的圖象,求函數g(x)的單調遞減區(qū)間.

查看答案和解析>>

同步練習冊答案