已知函數(shù)f(x)=x2+2(1-a)x+2(1-a)ln(x-1)x∈(1,+∞).
(1)x=
3
2
是函數(shù)的一個(gè)極值點(diǎn),求a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)當(dāng)a=2時(shí),函數(shù)g(x)=-x2-b,(b>0),若對(duì)任意m1,m2∈[
1
e
+1,e+1],
.
g(m2)-f(m1) 
  
.
<2g2+2g
都成立,求b的取值范圍.
分析:(1)若x=
3
2
是函數(shù)f(x)的一個(gè)極值點(diǎn),求導(dǎo)得到f′(
3
2
)=0得,求a;
(2)由(1)得到的導(dǎo)數(shù),考慮f(x)的定義域,利用導(dǎo)數(shù)與單調(diào)性的關(guān)系即可確定函數(shù)的單調(diào)區(qū)間;
(3)若對(duì)任意m1,m2∈[
1
e
+1,e+1],
.
g(m2)-f(m1) 
  
.
<2e2+2e
都成立,轉(zhuǎn)化為求函數(shù)f(x)在區(qū)間∈[
1
e
+1,e+1]上的最大值與函數(shù)g(x)在區(qū)間∈[
1
e
+1,e+1]上的最小值的差小于2e2+2e即可,從而建立關(guān)于b的不等關(guān)系求出b的取值范圍.
解答:解:(1)函數(shù)f(x)=x2+2(1-a)x+2(1-a)ln(x-1)
f′(x)=2x+2(1-a)+
2(1-a)
x-1
,…(2分)
∵x=
3
2
是函數(shù)的一個(gè)極值點(diǎn),
∴f′(
3
2
)=0
解得:a=
3
2
…(4分)
(2)∵f′(x)=2x+2(1-a)+
2(1-a)
x-1
=
2x(x-a)
x-1

又f(x)的定義域?yàn)椋?,+∞).
∴當(dāng)a≤1時(shí),函數(shù)f(x)的單調(diào)增區(qū)間(1,+∞).…(6分)
當(dāng)a>1時(shí),函數(shù)f(x)的單調(diào)增區(qū)間(a,+∞),減區(qū)間為(1,a).…(…(8分)
(3)當(dāng)a=2時(shí),由(2)知f(x)在(1,2)減,在(2,+∞)增.
∵f(2)=0,f(
1
e
+1)=
1
e2+1
,f(e+1)=e2-3
∴y=f(x)在[
1
e
+1,e+1]上的值域?yàn)閇0,e2-3]…(10分)
∵函數(shù)g(x)=-x2-b在[
1
e
+1,e+1]上是減函數(shù),
∴y=g(x)在[
1
e
+1,e+1]上的值域?yàn)閇-(e+1)2-b,-(
1
e
+1)2-b]…(11分)
∵b>0
∴-(e+1)2-b,-(
1
e
+1)2-b都小于0
.
g(m2)-f(m1) 
  
.
<2e2+2e
,只要e2-3-[-(e+1)2-b]=e2-3+(e+1)2+b=2e2+2e-2+b<2e2+2e即可
…(12分)
解得:0<b<2…(14分)
點(diǎn)評(píng):考查x=x0是極值點(diǎn)是f′(x0)=0的充分非必要條件,考查應(yīng)用導(dǎo)數(shù)研究函數(shù)的極值最值問題,有關(guān)恒成立的問題一般采取分離參數(shù),轉(zhuǎn)化為求函數(shù)的最值問題,體現(xiàn)了轉(zhuǎn)化的思想方法,屬難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案