已知等比數(shù)列{an}中,a1+a2+a3=2,a2+a3+a4=4,a5+a6+a7=(  )
A、64B、32C、16D、8
考點(diǎn):等比數(shù)列的性質(zhì)
專題:計算題,等差數(shù)列與等比數(shù)列
分析:利用a2+a3+a4=(a1+a2+a3)•q和a5+a6+a7=(a1+a2+a3)q4,即可求解.
解答: 解:∵等比數(shù)列{an}中,a1+a2+a3=2,a2+a3+a4=4,
∴q=2,
∴a5+a6+a7=(a1+a2+a3)q4=2×24=32.
故選:B.
點(diǎn)評:本題主要考查了等比數(shù)列的性質(zhì).本題的關(guān)鍵是利用了a2+a3+a4=(a1+a2+a3)•q和a5+a6+a7=(a1+a2+a3)q4
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={(x,y)|x-y+b=0}與集合B={(x,y)|
4x-x2
+y-3=0},若A∩B是單元素集合,則b的取值范圍是( 。
A、{1-2
2
,1+2
2
}
B、(1-2
2
,3]
C、(-1,3]
D、(-1,3]∪{1-2
2
}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從1,2,3,4四個數(shù)字中任取幾個數(shù)字作和(不重復(fù)。,則不同的結(jié)果有( 。
A、4種B、5種C、8種D、11種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線ax+by-1=0(a>0,b>0)過函數(shù)y=x3與y=
1
x
在第一象限內(nèi)的交點(diǎn),則
1
a
+
1
b
的最小值為(  )
A、3B、4C、8D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在空間直角坐標(biāo)系中A,B兩點(diǎn)的坐標(biāo)為A(2,3,1),B(-1,-2,-4),則A.B點(diǎn)之間的距離是( 。
A、59
B、
59
C、7
D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合B={a1,a2,…,an},J={b1,b2,…,bm},定義集合B⊕J={(a,b)|a=a1+a2+…+an,b=b1+b2+…+bm},已知B={51,21,28},J={89,70,52},則B⊕J的子集為( 。
A、(100,211)
B、{(100,211)}
C、∅,(100,211)
D、∅,{(100,211)}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正項(xiàng)等比數(shù)列{an}滿足:a2012=a2011+2a2010,且
anam
=4a1,則6(
1
m
+
1
n
)的最小值為(  )
A、
2
3
B、2
C、4
D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知方程ax2+4x+3=0的解集為單元素集,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=
e1
-
e2
b
=2
e1
+
e2
,其中
e1
=(-1,1),
e2
=(1,0),求:
(Ⅰ)
a
b
和|
a
+
b
|的值;
(Ⅱ)
a
b
夾角θ的余弦值.

查看答案和解析>>

同步練習(xí)冊答案