甲有大小相同的兩張卡片,標(biāo)有數(shù)字2、3;乙有大小相同的卡片四張,分別標(biāo)有1、2、3、4.
(1)求乙隨機抽取的兩張卡片的數(shù)字之和為奇數(shù)的概率;
(2)甲、乙分別取出一張卡,比較數(shù)字,數(shù)字大者獲勝,求乙獲勝的概率.
(1);(2).

試題分析:(1)兩張卡片的數(shù)字之和為奇數(shù),即一奇一偶;兩張卡片的數(shù)字之和為偶數(shù),即兩奇或兩偶;(2)乙獲勝,即要求乙取出的卡片上標(biāo)有的數(shù)字比甲取出的卡片上標(biāo)有的數(shù)字大,這樣的情形有多少種,往往需要用枚舉法.在(1)中我們是不考慮兩張卡片的順序的,若考慮順序,即原題(1)這樣表述:求乙隨機先后抽取的兩張卡片的數(shù)字之和為奇數(shù)的概率,則應(yīng)這樣求解:基本事件總數(shù)為,同時兩張卡片的數(shù)字之和為奇數(shù),即分為先奇后偶和先偶后奇,共種,概率為,所以概率計算一定要分清與順序是否有關(guān).
試題解析:(1)乙隨機在分別標(biāo)有1、2、3、4的四張卡片中抽取的兩張卡片,其基本事件共有種,若要求兩張卡片的數(shù)字之和為奇數(shù),即一張為奇數(shù),即在1、3中抽一張,另一張為偶數(shù),即在2、4中抽一張,則兩張卡片的數(shù)字之和為奇數(shù)這樣的事件含有基本事件,根據(jù)古典概型概率計算公式的概率為.                                                            5分
(2)甲、乙分別取出一張卡,則基本事件總數(shù)為,乙獲勝,即要求乙取出的卡片上標(biāo)有的數(shù)字比甲取出的卡片上標(biāo)有的數(shù)字大,故符合條件的數(shù)對有,有3對,根據(jù)古典概型概率計算公式得乙獲勝的概率為.                                               10分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

現(xiàn)有編號分別為1,2,3,4,5的五個不同的語文題和編號分別為6,7,8,9,的四個不同的數(shù)學(xué)題。甲同學(xué)從這九個題中一次隨機抽取兩道題,每題被抽到的概率是相等的,用符號(x,y)表示事件“抽到的兩題的編號分別為x、y,且
(1)共有多少個基本事件?并列舉出來;
(2)求甲同學(xué)所抽取的兩題的編號之和小于17但不小于11的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

一批產(chǎn)品分為一、二、三級,其中一級品是二級品的兩倍,三級品為二級品的一半,從這批產(chǎn)品中隨機抽取一個檢驗,其級別為隨機變量,則(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

某射手的一次射擊中,射中10環(huán)、9環(huán)、8環(huán)的概率分別為0.2、0.3、0.1,則此射手在一次射擊中不超過8環(huán)的概率為(  )
A.0.5B.0.3C.0.6D.0.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)隨機變量X的分布為P(x=i)=a-(
1
3
i,i=1,2,3則a的值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

西安世園會志愿者招騁正如火如荼進行著,甲、乙、丙三名大學(xué)生躍躍欲試,已知甲能被錄用的概率為
2
3
,甲、乙兩人都不能被錄用的概率為
1
12
,乙、丙兩人都能被錄用的概率為
3
8

(1)乙、丙兩人各自能被錄用的概率;
(2)求甲、乙、丙三人至少有兩人能被錄用的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

從數(shù)字1、2、3、4、5中任取兩個不同的數(shù)字構(gòu)成一個兩位數(shù),則這個兩位數(shù)大于40的概率為            .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

將號碼分別為1、2、…、9的九個小球放入一個袋中,這些小球僅號碼不同,其余完全相同,甲從袋中摸出一個球.其號碼為a,放回后,乙從此袋中再摸出一個球,其號碼為b,則使不等式a-2b+10>0成立的事件發(fā)生的概率等于________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

[2014·浙江模擬]從裝有3個紅球、2個白球的袋中任取3個球,則所取的3個球中至少有1個白球的概率是(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案