的三外頂點(diǎn)分別為.
(1)求邊AC所在的直線方程;
(2)求AC邊上的中線BD所在的直線的方程。
(1)(2)
解析試題分析:(1)根據(jù)直線方程的截距式方程列式,化簡(jiǎn)即得AC邊所在直線的方程;
(2)由線段的中點(diǎn)坐標(biāo)公式,算出AC中點(diǎn)D的坐標(biāo),從而得到直線AD的斜率,再由直線方程的點(diǎn)斜式列式,化簡(jiǎn)即得BC邊上中線所在直線的方程.
試題解析:
(1)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/d9/2/6dyl1.png" style="vertical-align:middle;" />
所以直線AC的截距式方程為整理得:
直線AC方程的一般式為
(2)設(shè)D點(diǎn)的坐標(biāo)為由中點(diǎn)坐標(biāo)公式可得.因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/b9/7/1xkot4.png" style="vertical-align:middle;" />,所以由兩點(diǎn)式可得:
BD所在直線的方程為整理得:
考點(diǎn):直線的兩點(diǎn)式方程;直線的一般式方程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xOy中,已知圓C1:(x+3)2+(y-1)2=4和圓C2:(x-4)2+(y-5)2=4.
(1)若直線l過點(diǎn)A(4,0),且被圓C1截得的弦長(zhǎng)為2,求直線l的方程;
(2)設(shè)P為平面上的點(diǎn),滿足:存在過點(diǎn)P的無窮多對(duì)互相垂直的直線l1和l2,它們分別與圓C1和圓C2相交,且直線l1被圓C1截得的弦長(zhǎng)與直線l2被圓C2截得的弦長(zhǎng)相等,試求所有滿足條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知雙曲線的中心為原點(diǎn),左、右焦點(diǎn)分別為、,離心率為,點(diǎn)是直線上任意一點(diǎn),點(diǎn)在雙曲線上,且滿足.
(1)求實(shí)數(shù)的值;
(2)證明:直線與直線的斜率之積是定值;
(3)若點(diǎn)的縱坐標(biāo)為,過點(diǎn)作動(dòng)直線與雙曲線右支交于不同的兩點(diǎn)、,在線段上去異于點(diǎn)、的點(diǎn),滿足,證明點(diǎn)恒在一條定直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知平行四邊形的兩條邊所在直線的方程分別是,, 且它的對(duì)角線的交點(diǎn)是M(3,3),求這個(gè)平行四邊形其它兩邊所在直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
光線從點(diǎn)射出,到軸上的點(diǎn)后,被軸反射,這時(shí)反射光線恰好過點(diǎn),求所在直線的方程及點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知直線過點(diǎn).
(1)當(dāng)直線與點(diǎn)、的距離相等時(shí),求直線的方程;
(2)當(dāng)直線與軸、軸圍成的三角形的面積為時(shí),求直線的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com