【題目】如圖,已知多面體的底面是邊長為2的菱形,底面,,且.

(1)證明:平面;

(2)若直線與平面所成的角為,求二面角的大小.

【答案】(1)詳見解析;(2).

【解析】

(1)可證平面平面,從而可證平面.

(2)建立空間直角坐標(biāo)系,通過計(jì)算兩個(gè)平面的法向量可得二面角的余弦值,從而得到二面角的平面角的大小.

(1)底面是菱形,,

平面,平面,所以平面.

同理,平面,,平面平面,

平面,所以平面.

(2)底面,即為直線與平面所成的角,

,中,,

又底面是邊長為2的菱形,,

中點(diǎn),連,則,

為坐標(biāo)原點(diǎn),分別以所在方向?yàn)檩S正方向建立空間直角坐標(biāo)系,則各點(diǎn)坐標(biāo)分別為,,,,,

底面,,又底面是菱形,,

平面,平面的法向量取 ,

設(shè)平面的法向量,則:,

,令,

,

二面角的大小為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】摩拜單車和小黃車等各種共享單車的普及給我們的生活帶來了便利.已知某共享單車的收費(fèi)標(biāo)準(zhǔn)是:每車使用不超過1小時(shí)(包含1小時(shí))是免費(fèi)的,超過1小時(shí)的部分每小時(shí)收費(fèi)1元(不足1小時(shí)的部分按1小時(shí)計(jì)算,例如:騎行2.5小時(shí)收費(fèi)2元).現(xiàn)有甲、乙兩人各自使用該種共享單車一次.設(shè)甲、乙不超過1小時(shí)還車的概率分別為1小時(shí)以上且不超過2小時(shí)還車的概率分別為兩人用車時(shí)間都不會(huì)超過3小時(shí).

(Ⅰ)求甲乙兩人所付的車費(fèi)相同的概率;

)設(shè)甲乙兩人所付的車費(fèi)之和為隨機(jī)變量的分布列及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1)已知直線l過點(diǎn),它的一個(gè)方向向量為

①求直線l的方程;

②一組直線,,,,都與直線l平行,它們到直線l的距離依次為d,,,),且直線恰好經(jīng)過原點(diǎn),試用n表示d的關(guān)系式,并求出直線的方程(用n、i表示);

2)在坐標(biāo)平面上,是否存在一個(gè)含有無窮多條直線,,的直線簇,使它同時(shí)滿足以下三個(gè)條件:①點(diǎn);②,其中是直線的斜率,分別為直線x軸和y軸上的截距;③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方體的棱長為1.

正方體中哪些棱所在的直線與直線是異面直線?

若M,N分別是 ,的中點(diǎn),求異面直線MN與BC所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的長軸長為4,焦距為

求橢圓的方程;

過動(dòng)點(diǎn)的直線交軸與點(diǎn),交于點(diǎn) (在第一象限),且是線段的中點(diǎn).過點(diǎn)軸的垂線交于另一點(diǎn),延長于點(diǎn).

設(shè)直線的斜率分別為,證明為定值;

求直線的斜率的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左右焦點(diǎn)為,是橢圓上半部分的動(dòng)點(diǎn),連接和長軸的左右兩個(gè)端點(diǎn)所得兩直線交正半軸于兩點(diǎn)(點(diǎn)的上方或重合).

1)當(dāng)面積最大時(shí),求橢圓的方程;

2)當(dāng)時(shí),在軸上是否存在點(diǎn)使得為定值,若存在,求點(diǎn)的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(多選題)下列說法正確的是(

A.橢圓1上任意一點(diǎn)(非左右頂點(diǎn))與左右頂點(diǎn)連線的斜率乘積為

B.過雙曲線1焦點(diǎn)的弦中最短弦長為

C.拋物線y22px上兩點(diǎn)Ax1,y1).Bx2y2),則弦AB經(jīng)過拋物線焦點(diǎn)的充要條件為x1x2

D.若直線與圓錐曲線有一個(gè)公共點(diǎn),則該直線和圓錐曲線相切

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)為調(diào)研學(xué)生在 兩家餐廳用餐的滿意度,從在 兩家餐廳都用過餐的學(xué)生中隨機(jī)抽取了100人,每人分別對這兩家餐廳進(jìn)行評分,滿分均為60分.

整理評分?jǐn)?shù)據(jù),將分?jǐn)?shù)以10為組距分成6組: , , , , ,得到餐廳分?jǐn)?shù)的頻率分布直方圖,和餐廳分?jǐn)?shù)的頻數(shù)分布表:

定義學(xué)生對餐廳評價(jià)的“滿意度指數(shù)”如下:

分?jǐn)?shù)

滿意度指數(shù)

(Ⅰ)在抽樣的100人中,求對餐廳評價(jià)“滿意度指數(shù)”為0的人數(shù);

(Ⅱ)從該校在, 兩家餐廳都用過餐的學(xué)生中隨機(jī)抽取1人進(jìn)行調(diào)查,試估計(jì)其對餐廳評價(jià)的“滿意度指數(shù)”比對餐廳評價(jià)的“滿意度指數(shù)”高的概率;

(Ⅲ)如果從, 兩家餐廳中選擇一家用餐,你會(huì)選擇哪一家?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)名著《九章算術(shù)》中記載了有關(guān)特殊幾何體的定義:陽馬指底面為矩形,一側(cè)棱垂直于底面的四棱錐,塹堵指底面是直角三角形,且側(cè)棱垂直于底面的三棱柱.

1)某塹堵的三視圖,如圖1,網(wǎng)格中的每個(gè)小正方形的邊長為1,求該塹堵的體積;

2)在塹堵中,如圖2,,若,當(dāng)陽馬的體積最大時(shí),求二面角的大小.

查看答案和解析>>

同步練習(xí)冊答案