函數(shù),若f(1)+f(a)=2,則a=   
【答案】分析:由題設(shè)函數(shù),f(1)=1,又f(1)+f(a)=2,可得f(a)=1,分a>0,與a<0兩種情況求a值.
解答:解:∵函數(shù),∴f(1)=1,
又f(1)+f(a)=2,可得f(a)=1,
當(dāng)a>0時(shí),有e1-1=1,故a=1
當(dāng)a<0時(shí),有a2+=1,解得a=
a的值為 1或
故答案為  1或
點(diǎn)評:本題考點(diǎn)是分段函數(shù)求值,考查分段方程的求解方法,分段方程的求解應(yīng)該分段求解,在每一段上解出符合條件的解,然后再將它們并起來.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

12、對于函數(shù)y=f(x),定義域?yàn)镈,以下命題正確的是(只要求寫出命題的序號)
;
①若f(-1)=f(1),f(-2)=f(2),則y=f(x)是D上的偶函數(shù);
②若f(-1)<f(0)<f(1)<f(2),則y=f(x)是D上的遞增函數(shù);
③若f'(2)=0,則y=f(x)在x=2處一定有極大值或極小值;
④若?x∈D,都有f(x+1)=f(-x+3)成立,則y=f(x)圖象關(guān)于直線x=2對稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

對于函數(shù)y=f(x),定義域?yàn)镈,以下命題正確的是(只要求寫出命題的序號) ______;
①若f(-1)=f(1),f(-2)=f(2),則y=f(x)是D上的偶函數(shù);
②若f(-1)<f(0)<f(1)<f(2),則y=f(x)是D上的遞增函數(shù);
③若f'(2)=0,則y=f(x)在x=2處一定有極大值或極小值;
④若?x∈D,都有f(x+1)=f(-x+3)成立,則y=f(x)圖象關(guān)于直線x=2對稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年浙江省溫州市八校聯(lián)考高三(上)入學(xué)數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

對于函數(shù)y=f(x),定義域?yàn)镈,以下命題正確的是(只要求寫出命題的序號)     ;
①若f(-1)=f(1),f(-2)=f(2),則y=f(x)是D上的偶函數(shù);
②若f(-1)<f(0)<f(1)<f(2),則y=f(x)是D上的遞增函數(shù);
③若f'(2)=0,則y=f(x)在x=2處一定有極大值或極小值;
④若?x∈D,都有f(x+1)=f(-x+3)成立,則y=f(x)圖象關(guān)于直線x=2對稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年北京市首師大附中高三大練習(xí)數(shù)學(xué)試卷08(理科)(解析版) 題型:填空題

對于函數(shù)y=f(x),定義域?yàn)镈,以下命題正確的是(只要求寫出命題的序號)    
①若f(-1)=f(1),f(-2)=f(2),則y=f(x)是D上的偶函數(shù);
②若f(-1)<f(0)<f(1)<f(2),則y=f(x)是D上的遞增函數(shù);
③若f'(2)=0,則y=f(x)在x=2處一定有極大值或極小值;
④若?x∈D,都有f(x+1)=f(-x+3)成立,則y=f(x)圖象關(guān)于直線x=2對稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年北京市首師大附中高三大練習(xí)數(shù)學(xué)試卷09(文科)(解析版) 題型:填空題

對于函數(shù)y=f(x),定義域?yàn)镈,以下命題正確的是(只要求寫出命題的序號)     ;
①若f(-1)=f(1),f(-2)=f(2),則y=f(x)是D上的偶函數(shù);
②若f(-1)<f(0)<f(1)<f(2),則y=f(x)是D上的遞增函數(shù);
③若f'(2)=0,則y=f(x)在x=2處一定有極大值或極小值;
④若?x∈D,都有f(x+1)=f(-x+3)成立,則y=f(x)圖象關(guān)于直線x=2對稱.

查看答案和解析>>

同步練習(xí)冊答案