【題目】某商場對顧客實行購物優(yōu)惠活動,規(guī)定 :一次購物總額

1)如果不超過500元,那么不予優(yōu)惠;

2)如果超過500元但不超過1000元,那么超過500元部分按標(biāo)價給予8折優(yōu)惠;

3)如果超過1000元,那么其中超過500不超過1000元給予8折優(yōu)惠,超過1000元部分給予5折優(yōu)惠.設(shè)一次購物標(biāo)價總額為x元,優(yōu)惠后實際付款額為f(x).

1)試寫出f(x)的解析式;

2)如果某顧客實際付款額為1600元,在這次優(yōu)惠活動中他實際付款額比購物標(biāo)價總額少支出多少元?

【答案】12800元.

【解析】

1)根據(jù)題意列出函數(shù)表達(dá)式即可;

2)利用判斷,再解方程求出后即可得解.

1)由題可知:.

2)∵是增函數(shù)且,

,∴,

解得

,

故此人在這次優(yōu)惠活動中他實際付款比購物總額少支出元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定點(diǎn)M(0,2),N(2,0),直線lkxy2k20(k為常數(shù))

(1)若點(diǎn)MN到直線l的距離相等,求實數(shù)k的值;

(2)對于l上任意一點(diǎn)P,∠MPN恒為銳角,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面,,,點(diǎn)Q在棱AB上.

(1)證明:平面.

(2)若三棱錐的體積為,求點(diǎn)B到平面PDQ的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】6個人站成前后二排,每排3人,若甲、乙兩人左右、前后均不相鄰,則不同的站法種數(shù)為

A. 384 B. 480 C. 768 D. 240

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|x﹣a|+3x,其中a>0.

(1)當(dāng)a=1時,求不等式f(x)>3x+2的解集;

(2)若不等式f(x)≤0的解集為{x|x≤﹣1},求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù),若存在實數(shù)對,使得等式對定義域中的任意都成立,則稱函數(shù)是“型函數(shù)”.

(1)若函數(shù)是“型函數(shù)”,且,求出滿足條件的實數(shù)對;

(2)已知函數(shù).函數(shù)是“型函數(shù)”,對應(yīng)的實數(shù)對,當(dāng)時,.若對任意時,都存在,使得,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C1(a>b>0)的一個焦點(diǎn)是F(1,0),且離心率為.

(Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)經(jīng)過點(diǎn)F的直線交橢圓CM,N兩點(diǎn),線段MN的垂直平分線交y軸于點(diǎn)P(0y0),求y0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義域在R的單調(diào)增函數(shù)滿足恒等式x),且.

(1)求,;

(2)判斷函數(shù)的奇偶性,并證明;

(3)若對于任意,都有成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正項等比數(shù)列的前n項和,滿足,則的最小值為

A. B. 3 C. 4 D. 12

查看答案和解析>>

同步練習(xí)冊答案