17.在算式“30-△=4×□”中的△,□分別填入兩個正整數(shù),使它們的倒數(shù)和最小,則這兩個數(shù)構(gòu)成的數(shù)對(△,□)應為( 。
A.(4,14)B.(6,6)C.(3,18)D.(10,5)

分析 設△=a,□=b,(a>0,b>0),則a+4b=30,即有$\frac{1}{a}$+$\frac{1}$=$\frac{1}{30}$(a+4b)($\frac{1}{a}$+$\frac{1}$)=$\frac{1}{30}$(5+$\frac{a}$+$\frac{4b}{a}$),運用基本不等式即可得到最小值和取得等號的條件.

解答 解:設△=a,□=b,(a>0,b>0),
則a+4b=30,
即有$\frac{1}{a}$+$\frac{1}$=$\frac{1}{30}$(a+4b)($\frac{1}{a}$+$\frac{1}$)=$\frac{1}{30}$(5+$\frac{a}$+$\frac{4b}{a}$)
≥$\frac{1}{30}$(5+2$\sqrt{\frac{a}•\frac{4b}{a}}$)=$\frac{1}{30}$×(5+4)=$\frac{3}{10}$.
當且僅當a=2b,由a+4b=30,可得a=10,b=5,
取得最小值.
即這兩個數(shù)構(gòu)成的數(shù)對(△,□)應為(10,5).
故選:D.

點評 本題考查基本不等式的運用:求最值,注意運用乘1法和滿足的條件:一正二定三等,考查運算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

7.已知集合A={x|$\frac{x-3}{x+1}$≥0},B={x|log2x<2},則(∁RA)∩B=(0,3).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.在△ABC中,B=135°,C=15°,a=5,則邊長b=5$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.將全體正整數(shù)排成一個三角形數(shù)陣:

按照以上排列的規(guī)律,數(shù)陣中第n 行(n≥3)從左向右的第3 個數(shù)為( 。
A.$\frac{{{n^2}-n+6}}{2}$B.$\frac{{{n^2}-n+6}}{3}$C.$\frac{{{n^2}-2n+10}}{2}$D.$\frac{{{n^2}+3n+6}}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知直線y=-x+1與橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)相交于A、B兩點.
(1)若橢圓的離心率為$\frac{{\sqrt{3}}}{3}$,線段AB的長為$\frac{{8\sqrt{3}}}{5}$,求橢圓的方程;
(2)若向量$\overrightarrow{OA}$與向量$\overrightarrow{OB}$互相垂直(其中O為坐標原點),當橢圓的離心率e∈[$\frac{1}{2}$,$\frac{{\sqrt{2}}}{2}$]時,求橢圓的長軸長的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.下列有關(guān)命正確的是( 。
A.命題“若x2=1則x=1”的否命題為“若x2=1,則x≠1”
B.“x=-1是x2-5x-6=0”必要不充分條件
C.命題“?x∈(1,+∞),使是x2+x-1<0”的否定是:“?x∈(1,+∞),均有x2+x-1≥0”
D.命題“已知x,y∈R,若x≠1,或y≠4則x+y≠5”為真命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知函數(shù)f(x)=${x^{\frac{1}{2}}}$,給出下列結(jié)論:
①若x>1,則f(x)>1;
②若0<x1<x2,則f(x2)-f(x1)>x2-x1
③若0<x1<x2,則x2f(x1)<x1f(x2);
④若0<x1<x2,則$\frac{f(x_1)+f(x_2)}{2}$<f($\frac{{x}_{1}+{x}_{2}}{2}$).
其中正確結(jié)論的序號是(  )
A.①②B.①④C.②③D.③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=4x3-3x2cosθ+$\frac{3}{16}$cosθ,其中x∈R,θ為參數(shù),且0<θ<$\frac{π}{2}$.
(Ⅰ)求參數(shù)θ的取值范圍,使函數(shù)f(x)的極小值大于零;
(Ⅱ)若對于(1)中的任意θ,函數(shù)f(x)在區(qū)間(2a-1,a)內(nèi)都是增函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.函數(shù)f(x)=exsinx的圖象在點(0,f(0))處的切線的傾斜角為45°.

查看答案和解析>>

同步練習冊答案