精英家教網 > 高中數學 > 題目詳情
已知函數y=g(x)與f(x)=loga(x+1)(a>1)的圖象關于原點對稱.
(1)寫出y=g(x)的解析式;
(2)若函數F(x)=f(x)+g(x)+m為奇函數,試確定實數m的值;
(3)當x∈[0,1)時,總有f(x)+g(x)≥n成立,求實數n的取值范圍.
解:(1)設M(x,y)是函數y=g(x)圖象上任意一點,
則M(x,y)關于原點的對稱點為N(﹣x,﹣y)
N在函數f(x)=loga(x+1)的圖象上,
∴﹣y=loga(﹣x+1)
(2)∵F(x)=loga(x+1)﹣loga(1﹣x)+m為奇函數.
∴F(﹣x)=﹣F(x)
∴l(xiāng)oga(1﹣x)﹣loga(1+x)+m=﹣loga(1+x)+loga(1﹣x)﹣m ∴ 
3)由 
 ,由題意知,只要Q(x)min≥n即可 ∵ 在[0,1)上是增函數
∴n≤0
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數y=g(x)與f(x)=loga(x+1)(a>1)的圖象關于原點對稱.
(1)寫出y=g(x)的解析式;
(2)若函數F(x)=f(x)+g(x)+m為奇函數,試確定實數m的值;
(3)當x∈[0,1)時,總有f(x)+g(x)≥n成立,求實數n的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數y=G(x)的圖象過原點,其導函數為y=f(x),函數f(x)=3x2+2bx+c且滿足f(1-x)=f(1+x).
(1)若f(x)≥0,對x∈[0,3]恒成立,求實數c的最小值.(2)設G(x)在x=t處取得極大值,記此極大值為g(t),求g(t)的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=lnx,g(x)=
1
2
ax2-(a-1)x,(a∈R).
(Ⅰ)已知函數y=g(x)的零點至少有一個在原點右側,求實數a的范圍.
(Ⅱ)記函數y=F(x)的圖象為曲線C.設點A(x1,y1),B(x2,y2)是曲線C上的不同兩點.如果在曲線C上存在點M(x0,y0),使得:①x0=
x1+x2
2
;②曲線C在點M處的切線平行于直線AB,則稱函數f(x)=存在“中值相依切線”.
試問:函數G(x)=f(x)-g(x)(a∈R且a≠0)是否存在“中值相依切線”,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數y=g(x)的圖象與f(x)=x+
1
x
的圖象關于點A(0,1)對稱.
(1)求y=g(x)的函數解析式;
(2)設F(x)=g(x)+
a
x
(a∈R),若對任意x∈(0,2],F(x)≥8恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•棗莊二模)已知函數f(x)=2co
s
2
 
ωx-1+2
3
cosωxsinωx(0<ω<1)
,直線x=
π
3
是f(x)
圖象的一條對稱軸.
(1)試求ω的值:
(2)已知函數y=g(x)的圖象是由y=f(x)圖象上的各點的橫坐標伸長到原來的2倍,然后再向左平移
3
個單位長度得到,若g(2α+
π
3
)=
6
5
,α∈(0,
π
2
),求sinα
的值.

查看答案和解析>>

同步練習冊答案