已知兩條直線m,n,兩個平面α,β,下列四個結(jié)論中正確的是(  )
A、若m⊥α,α⊥β,n∥β,則m∥n
B、若α∥β,m∥α,n∥β,則m∥n
C、若m⊥n,m⊥α,n⊥β,則α⊥β
D、若m⊥n,m∥α,n∥β,則α⊥β
考點:空間中直線與平面之間的位置關系
專題:空間位置關系與距離
分析:利用空間中線線、線面、面面間的位置關系求解.
解答: 解:若m⊥α,α⊥β,n∥β,則m與n相交、平行或異面,故A錯誤;
若α∥β,m∥α,n∥β,則m與n相交、平行或異面,故B錯誤;
若m⊥n,m⊥α,n⊥β,則由平面與平面垂直的判定定理得α⊥β,故C正確;
若m⊥n,m∥α,n∥β,則α與β相交與平行,故D錯誤.
故選:C.
點評:本題考查命題真假的判斷,是基礎題,解題時要認真審題,注意空間思維能力的培養(yǎng).
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}中,a1=
3
5
,an=2-
1
an-1
,(n≥2),求an的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1-
x
5的展開式x2的系數(shù)是(  )
A、-5B、5C、-10D、10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在正三棱柱ABC-A1B1C1中,E,F(xiàn)分別為BB1,AC的中點.
(1)求證:BF∥平面A1EC;
(2)若AB=AA1=2,求點A到平面A1EC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

f(x)為一次函數(shù),若f(2x-1)+2f(3x+4)=2x+1,求f(x)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l過點(-1,0),當直線l與圓x2+y2=2x有兩個交點時,其斜率k的取值范圍是( 。
A、(-
2
,
3
B、(-
2
,
2
C、(-1,1)
D、(-
3
3
,
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-1,g(x)=a|x-1|.
(1)若x∈R時,不等式f(x)≥g(x)恒成立,求實數(shù)a的取值范圍;
(2)求函數(shù)h(x)=|f(x)|+g(x)在區(qū)間[-2,2]上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin(ωx-
π
6
)(ω>0)和g(x)=cos(2x+φ)(0<φ<π)的圖象的對稱軸相同.
(1)求滿足題意的ω,φ的值;
(2)求F(x)=f(x)-g(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
log3x,x>0
log
1
3
(-x),x<0
,若f(m)>f(-m),則實數(shù)m的取值范圍是( 。
A、(-1,0)∪(0,1)
B、(-∞,-1)∪(1,+∞)
C、(-1,0)∪(1,+∞)
D、(-∞,-1)∪(0,1)

查看答案和解析>>

同步練習冊答案