【題目】對于定義域為的函數(shù),如果同時滿足以下三個條件:①任意的,總有;②;③若,,,總有成立,則稱函數(shù)為理想函數(shù).
(1)證明:若函數(shù)為理想函數(shù),則;
(2)證明:函數(shù),是理想函數(shù);
(3)證明:若函數(shù)為理想函數(shù),假定存在,使得且,則.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)內(nèi)角的對邊分別為,若,,,且,試求角和角.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠生產(chǎn)一批零件,為了解這批零件的質(zhì)量狀況,檢驗員從這批產(chǎn)品中隨機抽取了100件作為樣本進行檢測,將它們的重量(單位:g)作為質(zhì)量指標值,由檢測結(jié)果得到如下頻率分布表和頻率分布直方圖.
分組 | 頻數(shù) | 頻率 |
8 | ||
16 | 0.16 | |
4 | 0.04 | |
合計 | 100 | 1 |
(1)求圖中,的值;
(2)根據(jù)質(zhì)量標準規(guī)定:零件重量小于47或大于53為不合格品,重量在區(qū)間和內(nèi)為合格品,重量在區(qū)間內(nèi)為優(yōu)質(zhì)品.已知每件產(chǎn)品的檢測費用為5元,每件不合格品的回收處理費用為20元.以抽檢樣本重量的頻率分布作為該批零件重量的概率分布.若這批零件共400件,現(xiàn)有兩種銷售方案:
方案一:對剩余零件不再進行檢測,回收處理這100件樣本中的不合格品,余下所有零件均按150元/件售出;
方案二:繼續(xù)對剩余零件的重量進行逐一檢測,回收處理所有不合格品,合格品按150元/件售出,優(yōu)質(zhì)品按200元/件售出.
僅從獲得利潤大的角度考慮,該生產(chǎn)商應選擇哪種方案?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某研究機構為了解某學校學生使用手機的情況,在該校隨機抽取了60名學生(其中男、女生人數(shù)之比為2:1)進行問卷調(diào)查.進行統(tǒng)計后將這60名學生按男、女分為兩組,再將每組學生每天使用手機的時間(單位:分鐘)分為5組,得到如圖所示的頻率分布直方圖(所抽取的學生每天使用手機的時間均不超過50分鐘).
(1)求出女生組頻率分布直方圖中的值;
(2)求抽取的60名學生中每天使用手機時間不少于30分鐘的學生人數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《九章算術》是我國古代的數(shù)學名著,書中有如下問題:“今有五人分五錢,令上二人所得與下三人等.問各得幾何.”其意思為“已知甲、乙、丙、丁、戊五人分5錢,甲、乙兩人所得與丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差數(shù)列.問五人各得多少錢?”(“錢”是古代的一種重量單位).這個問題中,丙所得為( )
A.錢B.1錢C.錢D.錢
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設數(shù)列,及函數(shù)(),().
(1)若等比數(shù)列滿足,,,求數(shù)列的前()項和;
(2)已知等差數(shù)列滿足,,(、均為常數(shù),,且),().試求實數(shù)對(,),使得成等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}滿足:a1+a2+a3+…+an=n-an,(n=1,2,3,…)
(Ⅰ)求證:數(shù)列{an-1}是等比數(shù)列;
(Ⅱ)令bn=(2-n)(an-1)(n=1,2,3,…),如果對任意n∈N*,都有bn+t≤t2,求實數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸的正半軸為極軸,建立極坐標系,已知直線的極坐標方程為.
(1)求曲線的普通方程和直線的直角坐標方程;
(2)設為曲線上的一個動點,求點到直線距離的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com