閱讀下面材料:
根據(jù)兩角和與差的正弦公式,有
------①
------②
由①+② 得
------③
令
有
代入③得
.
(Ⅰ)類比上述推證方法,根據(jù)兩角和與差的余弦公式,證明:
;
(Ⅱ)若
的三個內(nèi)角
滿足
,試判斷
的形狀.
(1)根據(jù)兩角和差的余弦公式可以得到結(jié)論,
(2)
為直角三角形
試題分析:解:解法一:(Ⅰ)因為
, ①
, ② 2分
①-② 得
. ③ 3分
令
有
,
代入③得
. 6分
(Ⅱ)由二倍角公式,
可化為
, 8分
即
. 9分
設(shè)
的三個內(nèi)角A,B,C所對的邊分別為
,
由正弦定理可得
11分
根據(jù)勾股定理的逆定理知
為直角三角形. 12分
解法二:(Ⅰ)同解法一.
(Ⅱ)利用(Ⅰ)中的結(jié)論和二倍角公式,
可化為
, 8分
因為A,B,C為
的內(nèi)角,所以
,
所以
.
又因為
,所以
,
所以
.
從而
. 10分
又因為
,所以
,即
.
所以
為直角三角形. 12分
點評:主要是考查了運用兩角和差的公式推理論證表達(dá)式以及運用二倍角公式來得到三角形定形,屬于中檔題。
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知
則
的值為
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
在
中,
,
,
分別是角
,
,
的對邊,
,
,且
,則
的
邊上的高等于( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知tan(
α+
β)=
,tan
=
,那么tan(
α+
)的值為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知
則
的值是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
(本題滿分12分)求使函數(shù)f(
)=
+
有意義的角
的集合。
查看答案和解析>>